Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}=-9
Ikkala tarafdan 9 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-9}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}=-3
-3 ni olish uchun -9 ni 3 ga bo‘ling.
x=\sqrt{3}i x=-\sqrt{3}i
Tenglama yechildi.
3x^{2}+9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 9}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va 9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 3\times 9}}{2\times 3}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-12\times 9}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-108}}{2\times 3}
-12 ni 9 marotabaga ko'paytirish.
x=\frac{0±6\sqrt{3}i}{2\times 3}
-108 ning kvadrat ildizini chiqarish.
x=\frac{0±6\sqrt{3}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\sqrt{3}i
x=\frac{0±6\sqrt{3}i}{6} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{3}i
x=\frac{0±6\sqrt{3}i}{6} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{3}i x=-\sqrt{3}i
Tenglama yechildi.