x uchun yechish
x=\frac{\sqrt{61}-5}{6}\approx 0,468374946
x=\frac{-\sqrt{61}-5}{6}\approx -2,135041613
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+5x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-3\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 5 ni b va -3 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 3\left(-3\right)}}{2\times 3}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-12\left(-3\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25+36}}{2\times 3}
-12 ni -3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{61}}{2\times 3}
25 ni 36 ga qo'shish.
x=\frac{-5±\sqrt{61}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{61}-5}{6}
x=\frac{-5±\sqrt{61}}{6} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{61} ga qo'shish.
x=\frac{-\sqrt{61}-5}{6}
x=\frac{-5±\sqrt{61}}{6} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{61} ni ayirish.
x=\frac{\sqrt{61}-5}{6} x=\frac{-\sqrt{61}-5}{6}
Tenglama yechildi.
3x^{2}+5x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+5x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
3x^{2}+5x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
3x^{2}+5x=3
0 dan -3 ni ayirish.
\frac{3x^{2}+5x}{3}=\frac{3}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{5}{3}x=\frac{3}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{3}x=1
3 ni 3 ga bo'lish.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=1+\left(\frac{5}{6}\right)^{2}
\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{6} olish uchun. Keyin, \frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{3}x+\frac{25}{36}=1+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{6} kvadratini chiqarish.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{61}{36}
1 ni \frac{25}{36} ga qo'shish.
\left(x+\frac{5}{6}\right)^{2}=\frac{61}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{61}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{6}=\frac{\sqrt{61}}{6} x+\frac{5}{6}=-\frac{\sqrt{61}}{6}
Qisqartirish.
x=\frac{\sqrt{61}-5}{6} x=\frac{-\sqrt{61}-5}{6}
Tenglamaning ikkala tarafidan \frac{5}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}