x uchun yechish
x = \frac{\sqrt{1969} - 35}{6} \approx 1,562235911
x=\frac{-\sqrt{1969}-35}{6}\approx -13,228902577
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+35x+1=63
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
3x^{2}+35x+1-63=63-63
Tenglamaning ikkala tarafidan 63 ni ayirish.
3x^{2}+35x+1-63=0
O‘zidan 63 ayirilsa 0 qoladi.
3x^{2}+35x-62=0
1 dan 63 ni ayirish.
x=\frac{-35±\sqrt{35^{2}-4\times 3\left(-62\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 35 ni b va -62 ni c bilan almashtiring.
x=\frac{-35±\sqrt{1225-4\times 3\left(-62\right)}}{2\times 3}
35 kvadratini chiqarish.
x=\frac{-35±\sqrt{1225-12\left(-62\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-35±\sqrt{1225+744}}{2\times 3}
-12 ni -62 marotabaga ko'paytirish.
x=\frac{-35±\sqrt{1969}}{2\times 3}
1225 ni 744 ga qo'shish.
x=\frac{-35±\sqrt{1969}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{1969}-35}{6}
x=\frac{-35±\sqrt{1969}}{6} tenglamasini yeching, bunda ± musbat. -35 ni \sqrt{1969} ga qo'shish.
x=\frac{-\sqrt{1969}-35}{6}
x=\frac{-35±\sqrt{1969}}{6} tenglamasini yeching, bunda ± manfiy. -35 dan \sqrt{1969} ni ayirish.
x=\frac{\sqrt{1969}-35}{6} x=\frac{-\sqrt{1969}-35}{6}
Tenglama yechildi.
3x^{2}+35x+1=63
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3x^{2}+35x+1-1=63-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
3x^{2}+35x=63-1
O‘zidan 1 ayirilsa 0 qoladi.
3x^{2}+35x=62
63 dan 1 ni ayirish.
\frac{3x^{2}+35x}{3}=\frac{62}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\frac{35}{3}x=\frac{62}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{35}{3}x+\left(\frac{35}{6}\right)^{2}=\frac{62}{3}+\left(\frac{35}{6}\right)^{2}
\frac{35}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{35}{6} olish uchun. Keyin, \frac{35}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{35}{3}x+\frac{1225}{36}=\frac{62}{3}+\frac{1225}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{35}{6} kvadratini chiqarish.
x^{2}+\frac{35}{3}x+\frac{1225}{36}=\frac{1969}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{62}{3} ni \frac{1225}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{35}{6}\right)^{2}=\frac{1969}{36}
x^{2}+\frac{35}{3}x+\frac{1225}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{35}{6}\right)^{2}}=\sqrt{\frac{1969}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{35}{6}=\frac{\sqrt{1969}}{6} x+\frac{35}{6}=-\frac{\sqrt{1969}}{6}
Qisqartirish.
x=\frac{\sqrt{1969}-35}{6} x=\frac{-\sqrt{1969}-35}{6}
Tenglamaning ikkala tarafidan \frac{35}{6} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}