Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}i}{3}
Tenglama yechildi.
3x^{2}+2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 3\times 2}}{2\times 3}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{6}i}{2\times 3}
-24 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{6}i}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{6}i}{3}
x=\frac{0±2\sqrt{6}i}{6} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{6}i}{3}
x=\frac{0±2\sqrt{6}i}{6} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}i}{3}
Tenglama yechildi.