n uchun yechish
n = -\frac{46}{3} = -15\frac{1}{3} \approx -15,333333333
n=19
Baham ko'rish
Klipbordga nusxa olish
a+b=-11 ab=3\left(-874\right)=-2622
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3n^{2}+an+bn-874 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-2622 2,-1311 3,-874 6,-437 19,-138 23,-114 38,-69 46,-57
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -2622-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-2622=-2621 2-1311=-1309 3-874=-871 6-437=-431 19-138=-119 23-114=-91 38-69=-31 46-57=-11
Har bir juftlik yigʻindisini hisoblang.
a=-57 b=46
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(3n^{2}-57n\right)+\left(46n-874\right)
3n^{2}-11n-874 ni \left(3n^{2}-57n\right)+\left(46n-874\right) sifatida qaytadan yozish.
3n\left(n-19\right)+46\left(n-19\right)
Birinchi guruhda 3n ni va ikkinchi guruhda 46 ni faktordan chiqaring.
\left(n-19\right)\left(3n+46\right)
Distributiv funktsiyasidan foydalangan holda n-19 umumiy terminini chiqaring.
n=19 n=-\frac{46}{3}
Tenglamani yechish uchun n-19=0 va 3n+46=0 ni yeching.
3n^{2}-11n-874=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-874\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -11 ni b va -874 ni c bilan almashtiring.
n=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-874\right)}}{2\times 3}
-11 kvadratini chiqarish.
n=\frac{-\left(-11\right)±\sqrt{121-12\left(-874\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
n=\frac{-\left(-11\right)±\sqrt{121+10488}}{2\times 3}
-12 ni -874 marotabaga ko'paytirish.
n=\frac{-\left(-11\right)±\sqrt{10609}}{2\times 3}
121 ni 10488 ga qo'shish.
n=\frac{-\left(-11\right)±103}{2\times 3}
10609 ning kvadrat ildizini chiqarish.
n=\frac{11±103}{2\times 3}
-11 ning teskarisi 11 ga teng.
n=\frac{11±103}{6}
2 ni 3 marotabaga ko'paytirish.
n=\frac{114}{6}
n=\frac{11±103}{6} tenglamasini yeching, bunda ± musbat. 11 ni 103 ga qo'shish.
n=19
114 ni 6 ga bo'lish.
n=-\frac{92}{6}
n=\frac{11±103}{6} tenglamasini yeching, bunda ± manfiy. 11 dan 103 ni ayirish.
n=-\frac{46}{3}
\frac{-92}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n=19 n=-\frac{46}{3}
Tenglama yechildi.
3n^{2}-11n-874=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3n^{2}-11n-874-\left(-874\right)=-\left(-874\right)
874 ni tenglamaning ikkala tarafiga qo'shish.
3n^{2}-11n=-\left(-874\right)
O‘zidan -874 ayirilsa 0 qoladi.
3n^{2}-11n=874
0 dan -874 ni ayirish.
\frac{3n^{2}-11n}{3}=\frac{874}{3}
Ikki tarafini 3 ga bo‘ling.
n^{2}-\frac{11}{3}n=\frac{874}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
n^{2}-\frac{11}{3}n+\left(-\frac{11}{6}\right)^{2}=\frac{874}{3}+\left(-\frac{11}{6}\right)^{2}
-\frac{11}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{6} olish uchun. Keyin, -\frac{11}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
n^{2}-\frac{11}{3}n+\frac{121}{36}=\frac{874}{3}+\frac{121}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{6} kvadratini chiqarish.
n^{2}-\frac{11}{3}n+\frac{121}{36}=\frac{10609}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{874}{3} ni \frac{121}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(n-\frac{11}{6}\right)^{2}=\frac{10609}{36}
n^{2}-\frac{11}{3}n+\frac{121}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(n-\frac{11}{6}\right)^{2}}=\sqrt{\frac{10609}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
n-\frac{11}{6}=\frac{103}{6} n-\frac{11}{6}=-\frac{103}{6}
Qisqartirish.
n=19 n=-\frac{46}{3}
\frac{11}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}