Omil
3\left(d-14\right)\left(d-3\right)
Baholash
3\left(d-14\right)\left(d-3\right)
Baham ko'rish
Klipbordga nusxa olish
3\left(d^{2}-17d+42\right)
3 omili.
a+b=-17 ab=1\times 42=42
Hisoblang: d^{2}-17d+42. Ifodani guruhlash orqali faktorlang. Avvalo, ifoda d^{2}+ad+bd+42 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-42 -2,-21 -3,-14 -6,-7
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 42-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-42=-43 -2-21=-23 -3-14=-17 -6-7=-13
Har bir juftlik yigʻindisini hisoblang.
a=-14 b=-3
Yechim – -17 yigʻindisini beruvchi juftlik.
\left(d^{2}-14d\right)+\left(-3d+42\right)
d^{2}-17d+42 ni \left(d^{2}-14d\right)+\left(-3d+42\right) sifatida qaytadan yozish.
d\left(d-14\right)-3\left(d-14\right)
Birinchi guruhda d ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(d-14\right)\left(d-3\right)
Distributiv funktsiyasidan foydalangan holda d-14 umumiy terminini chiqaring.
3\left(d-14\right)\left(d-3\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
3d^{2}-51d+126=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
d=\frac{-\left(-51\right)±\sqrt{\left(-51\right)^{2}-4\times 3\times 126}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
d=\frac{-\left(-51\right)±\sqrt{2601-4\times 3\times 126}}{2\times 3}
-51 kvadratini chiqarish.
d=\frac{-\left(-51\right)±\sqrt{2601-12\times 126}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
d=\frac{-\left(-51\right)±\sqrt{2601-1512}}{2\times 3}
-12 ni 126 marotabaga ko'paytirish.
d=\frac{-\left(-51\right)±\sqrt{1089}}{2\times 3}
2601 ni -1512 ga qo'shish.
d=\frac{-\left(-51\right)±33}{2\times 3}
1089 ning kvadrat ildizini chiqarish.
d=\frac{51±33}{2\times 3}
-51 ning teskarisi 51 ga teng.
d=\frac{51±33}{6}
2 ni 3 marotabaga ko'paytirish.
d=\frac{84}{6}
d=\frac{51±33}{6} tenglamasini yeching, bunda ± musbat. 51 ni 33 ga qo'shish.
d=14
84 ni 6 ga bo'lish.
d=\frac{18}{6}
d=\frac{51±33}{6} tenglamasini yeching, bunda ± manfiy. 51 dan 33 ni ayirish.
d=3
18 ni 6 ga bo'lish.
3d^{2}-51d+126=3\left(d-14\right)\left(d-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 14 ga va x_{2} uchun 3 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}