Baholash
3
Omil
3
Baham ko'rish
Klipbordga nusxa olish
\frac{3\left(\sqrt{5}-1\right)}{2}\times \frac{\sqrt{5}+1}{2}
3\times \frac{\sqrt{5}-1}{2} ni yagona kasrga aylantiring.
\frac{3\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{2\times 2}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3\left(\sqrt{5}-1\right)}{2} ni \frac{\sqrt{5}+1}{2} ga ko‘paytiring.
\frac{3\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}{4}
4 hosil qilish uchun 2 va 2 ni ko'paytirish.
\frac{\left(3\sqrt{5}-3\right)\left(\sqrt{5}+1\right)}{4}
3 ga \sqrt{5}-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3\left(\sqrt{5}\right)^{2}+3\sqrt{5}-3\sqrt{5}-3}{4}
3\sqrt{5}-3 ifodaning har bir elementini \sqrt{5}+1 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{3\times 5+3\sqrt{5}-3\sqrt{5}-3}{4}
\sqrt{5} kvadrati – 5.
\frac{15+3\sqrt{5}-3\sqrt{5}-3}{4}
15 hosil qilish uchun 3 va 5 ni ko'paytirish.
\frac{15-3}{4}
0 ni olish uchun 3\sqrt{5} va -3\sqrt{5} ni birlashtirish.
\frac{12}{4}
12 olish uchun 15 dan 3 ni ayirish.
3
3 ni olish uchun 12 ni 4 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}