Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} hosil qilish uchun 3 va \frac{1}{6} ni ko'paytirish.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
6 hosil qilish uchun 3 va 2 ni ko'paytirish.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
6+x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
2x+3 ifodaning har bir elementini 9-x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
15x ni olish uchun 18x va -3x ni birlashtirish.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
17x ni olish uchun 2x va 15x ni birlashtirish.
\frac{1}{2}\left(39+17x-2x^{2}\right)
39 olish uchun 12 va 27'ni qo'shing.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{1}{2} ga 39+17x-2x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{39}{2} hosil qilish uchun \frac{1}{2} va 39 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
\frac{17}{2} hosil qilish uchun \frac{1}{2} va 17 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
\frac{-2}{2} hosil qilish uchun \frac{1}{2} va -2 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x-x^{2}
-1 ni olish uchun -2 ni 2 ga bo‘ling.
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} hosil qilish uchun 3 va \frac{1}{6} ni ko'paytirish.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
6 hosil qilish uchun 3 va 2 ni ko'paytirish.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
6+x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
2x+3 ifodaning har bir elementini 9-x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
15x ni olish uchun 18x va -3x ni birlashtirish.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
17x ni olish uchun 2x va 15x ni birlashtirish.
\frac{1}{2}\left(39+17x-2x^{2}\right)
39 olish uchun 12 va 27'ni qo'shing.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{1}{2} ga 39+17x-2x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{39}{2} hosil qilish uchun \frac{1}{2} va 39 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
\frac{17}{2} hosil qilish uchun \frac{1}{2} va 17 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
\frac{-2}{2} hosil qilish uchun \frac{1}{2} va -2 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x-x^{2}
-1 ni olish uchun -2 ni 2 ga bo‘ling.