Baholash
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Kengaytirish
-x^{2}+\frac{17x}{2}+\frac{39}{2}
Grafik
Viktorina
Polynomial
5xshash muammolar:
3 \times \frac{ 1 }{ 6 } ((3 \times 2+x)2+(2x+3) \times (9-x))
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} hosil qilish uchun 3 va \frac{1}{6} ni ko'paytirish.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
6 hosil qilish uchun 3 va 2 ni ko'paytirish.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
6+x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
2x+3 ifodaning har bir elementini 9-x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
15x ni olish uchun 18x va -3x ni birlashtirish.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
17x ni olish uchun 2x va 15x ni birlashtirish.
\frac{1}{2}\left(39+17x-2x^{2}\right)
39 olish uchun 12 va 27'ni qo'shing.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{1}{2} ga 39+17x-2x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{39}{2} hosil qilish uchun \frac{1}{2} va 39 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
\frac{17}{2} hosil qilish uchun \frac{1}{2} va 17 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
\frac{-2}{2} hosil qilish uchun \frac{1}{2} va -2 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x-x^{2}
-1 ni olish uchun -2 ni 2 ga bo‘ling.
\frac{3}{6}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} hosil qilish uchun 3 va \frac{1}{6} ni ko'paytirish.
\frac{1}{2}\left(\left(3\times 2+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}\left(\left(6+x\right)\times 2+\left(2x+3\right)\left(9-x\right)\right)
6 hosil qilish uchun 3 va 2 ni ko'paytirish.
\frac{1}{2}\left(12+2x+\left(2x+3\right)\left(9-x\right)\right)
6+x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\left(12+2x+18x-2x^{2}+27-3x\right)
2x+3 ifodaning har bir elementini 9-x ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{1}{2}\left(12+2x+15x-2x^{2}+27\right)
15x ni olish uchun 18x va -3x ni birlashtirish.
\frac{1}{2}\left(12+17x-2x^{2}+27\right)
17x ni olish uchun 2x va 15x ni birlashtirish.
\frac{1}{2}\left(39+17x-2x^{2}\right)
39 olish uchun 12 va 27'ni qo'shing.
\frac{1}{2}\times 39+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{1}{2} ga 39+17x-2x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{39}{2}+\frac{1}{2}\times 17x+\frac{1}{2}\left(-2\right)x^{2}
\frac{39}{2} hosil qilish uchun \frac{1}{2} va 39 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{1}{2}\left(-2\right)x^{2}
\frac{17}{2} hosil qilish uchun \frac{1}{2} va 17 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x+\frac{-2}{2}x^{2}
\frac{-2}{2} hosil qilish uchun \frac{1}{2} va -2 ni ko'paytirish.
\frac{39}{2}+\frac{17}{2}x-x^{2}
-1 ni olish uchun -2 ni 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}