c uchun yechish
c=\frac{6x^{\frac{5}{3}}}{5}+3С
x uchun yechish
x=\frac{216^{\frac{4}{5}}\left(6С+5c\right)^{\frac{3}{5}}}{216}
Viktorina
Integration
5xshash muammolar:
3 \int x ^ { 2 / 3 } d x = \frac { 3 x ^ { 5 / 3 } } { 5 } + c
Baham ko'rish
Klipbordga nusxa olish
15\int x^{\frac{2}{3}}\mathrm{d}x=3x^{\frac{5}{3}}+5c
Tenglamaning ikkala tarafini 5 ga ko'paytirish.
3x^{\frac{5}{3}}+5c=15\int x^{\frac{2}{3}}\mathrm{d}x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
5c=15\int x^{\frac{2}{3}}\mathrm{d}x-3x^{\frac{5}{3}}
Ikkala tarafdan 3x^{\frac{5}{3}} ni ayirish.
5c=6x^{\frac{5}{3}}+15С
Tenglama standart shaklda.
\frac{5c}{5}=\frac{6x^{\frac{5}{3}}+15С}{5}
Ikki tarafini 5 ga bo‘ling.
c=\frac{6x^{\frac{5}{3}}+15С}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
c=\frac{6x^{\frac{5}{3}}}{5}+3С
6x^{\frac{5}{3}}+15С ni 5 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}