Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, 3x,6,4 ning eng kichik karralisiga ko‘paytiring.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
24 hosil qilish uchun 12 va 2 ni ko'paytirish.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
4 hosil qilish uchun 24 va \frac{1}{6} ni ko'paytirish.
4-9\left(2x+18\right)x=-48x
-9 hosil qilish uchun -\frac{3}{4} va 12 ni ko'paytirish.
4+\left(-18x-162\right)x=-48x
-9 ga 2x+18 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-18x^{2}-162x=-48x
-18x-162 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-18x^{2}-162x+48x=0
48x ni ikki tarafga qo’shing.
4-18x^{2}-114x=0
-114x ni olish uchun -162x va 48x ni birlashtirish.
-18x^{2}-114x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-114\right)±\sqrt{\left(-114\right)^{2}-4\left(-18\right)\times 4}}{2\left(-18\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -18 ni a, -114 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-114\right)±\sqrt{12996-4\left(-18\right)\times 4}}{2\left(-18\right)}
-114 kvadratini chiqarish.
x=\frac{-\left(-114\right)±\sqrt{12996+72\times 4}}{2\left(-18\right)}
-4 ni -18 marotabaga ko'paytirish.
x=\frac{-\left(-114\right)±\sqrt{12996+288}}{2\left(-18\right)}
72 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-114\right)±\sqrt{13284}}{2\left(-18\right)}
12996 ni 288 ga qo'shish.
x=\frac{-\left(-114\right)±18\sqrt{41}}{2\left(-18\right)}
13284 ning kvadrat ildizini chiqarish.
x=\frac{114±18\sqrt{41}}{2\left(-18\right)}
-114 ning teskarisi 114 ga teng.
x=\frac{114±18\sqrt{41}}{-36}
2 ni -18 marotabaga ko'paytirish.
x=\frac{18\sqrt{41}+114}{-36}
x=\frac{114±18\sqrt{41}}{-36} tenglamasini yeching, bunda ± musbat. 114 ni 18\sqrt{41} ga qo'shish.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
114+18\sqrt{41} ni -36 ga bo'lish.
x=\frac{114-18\sqrt{41}}{-36}
x=\frac{114±18\sqrt{41}}{-36} tenglamasini yeching, bunda ± manfiy. 114 dan 18\sqrt{41} ni ayirish.
x=\frac{\sqrt{41}}{2}-\frac{19}{6}
114-18\sqrt{41} ni -36 ga bo'lish.
x=-\frac{\sqrt{41}}{2}-\frac{19}{6} x=\frac{\sqrt{41}}{2}-\frac{19}{6}
Tenglama yechildi.
3\times 4\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, 3x,6,4 ning eng kichik karralisiga ko‘paytiring.
12\times 2\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
12 hosil qilish uchun 3 va 4 ni ko'paytirish.
24\times \frac{1}{6}-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
24 hosil qilish uchun 12 va 2 ni ko'paytirish.
4-\frac{3}{4}\left(2x+18\right)\times 12x=-48x
4 hosil qilish uchun 24 va \frac{1}{6} ni ko'paytirish.
4-9\left(2x+18\right)x=-48x
-9 hosil qilish uchun -\frac{3}{4} va 12 ni ko'paytirish.
4+\left(-18x-162\right)x=-48x
-9 ga 2x+18 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-18x^{2}-162x=-48x
-18x-162 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4-18x^{2}-162x+48x=0
48x ni ikki tarafga qo’shing.
4-18x^{2}-114x=0
-114x ni olish uchun -162x va 48x ni birlashtirish.
-18x^{2}-114x=-4
Ikkala tarafdan 4 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-18x^{2}-114x}{-18}=-\frac{4}{-18}
Ikki tarafini -18 ga bo‘ling.
x^{2}+\left(-\frac{114}{-18}\right)x=-\frac{4}{-18}
-18 ga bo'lish -18 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{19}{3}x=-\frac{4}{-18}
\frac{-114}{-18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{19}{3}x=\frac{2}{9}
\frac{-4}{-18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{19}{3}x+\left(\frac{19}{6}\right)^{2}=\frac{2}{9}+\left(\frac{19}{6}\right)^{2}
\frac{19}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{19}{6} olish uchun. Keyin, \frac{19}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{2}{9}+\frac{361}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{19}{6} kvadratini chiqarish.
x^{2}+\frac{19}{3}x+\frac{361}{36}=\frac{41}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{9} ni \frac{361}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{19}{6}\right)^{2}=\frac{41}{4}
x^{2}+\frac{19}{3}x+\frac{361}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{19}{6}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{19}{6}=\frac{\sqrt{41}}{2} x+\frac{19}{6}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}}{2}-\frac{19}{6} x=-\frac{\sqrt{41}}{2}-\frac{19}{6}
Tenglamaning ikkala tarafidan \frac{19}{6} ni ayirish.