Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

9+b^{2}=18
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9+b^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
-9+b^{2}=0
-9 olish uchun 9 dan 18 ni ayirish.
\left(b-3\right)\left(b+3\right)=0
Hisoblang: -9+b^{2}. -9+b^{2} ni b^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=3 b=-3
Tenglamani yechish uchun b-3=0 va b+3=0 ni yeching.
9+b^{2}=18
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
b^{2}=18-9
Ikkala tarafdan 9 ni ayirish.
b^{2}=9
9 olish uchun 18 dan 9 ni ayirish.
b=3 b=-3
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
9+b^{2}=18
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
9+b^{2}-18=0
Ikkala tarafdan 18 ni ayirish.
-9+b^{2}=0
-9 olish uchun 9 dan 18 ni ayirish.
b^{2}-9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -9 ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\left(-9\right)}}{2}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{36}}{2}
-4 ni -9 marotabaga ko'paytirish.
b=\frac{0±6}{2}
36 ning kvadrat ildizini chiqarish.
b=3
b=\frac{0±6}{2} tenglamasini yeching, bunda ± musbat. 6 ni 2 ga bo'lish.
b=-3
b=\frac{0±6}{2} tenglamasini yeching, bunda ± manfiy. -6 ni 2 ga bo'lish.
b=3 b=-3
Tenglama yechildi.