Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}-6x=3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-2x^{2}-6x-3=0
Ikkala tarafdan 3 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -6 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+8\left(-3\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2\left(-2\right)}
8 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{12}}{2\left(-2\right)}
36 ni -24 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2\left(-2\right)}
12 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{3}}{2\left(-2\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{3}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{3}+6}{-4}
x=\frac{6±2\sqrt{3}}{-4} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}-3}{2}
6+2\sqrt{3} ni -4 ga bo'lish.
x=\frac{6-2\sqrt{3}}{-4}
x=\frac{6±2\sqrt{3}}{-4} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{3} ni ayirish.
x=\frac{\sqrt{3}-3}{2}
6-2\sqrt{3} ni -4 ga bo'lish.
x=\frac{-\sqrt{3}-3}{2} x=\frac{\sqrt{3}-3}{2}
Tenglama yechildi.
-2x^{2}-6x=3
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{-2x^{2}-6x}{-2}=\frac{3}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{6}{-2}\right)x=\frac{3}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+3x=\frac{3}{-2}
-6 ni -2 ga bo'lish.
x^{2}+3x=-\frac{3}{2}
3 ni -2 ga bo'lish.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
3 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{2} olish uchun. Keyin, \frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+3x+\frac{9}{4}=-\frac{3}{2}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{2} kvadratini chiqarish.
x^{2}+3x+\frac{9}{4}=\frac{3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{2}\right)^{2}=\frac{3}{4}
x^{2}+3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{2}=\frac{\sqrt{3}}{2} x+\frac{3}{2}=-\frac{\sqrt{3}}{2}
Qisqartirish.
x=\frac{\sqrt{3}-3}{2} x=\frac{-\sqrt{3}-3}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.