Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3+x\times 4=xx+6+x\times 14
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x\times 4=x^{2}+6+x\times 14
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x\times 4-x^{2}=6+x\times 14
Ikkala tarafdan x^{2} ni ayirish.
3+x\times 4-x^{2}-6=x\times 14
Ikkala tarafdan 6 ni ayirish.
-3+x\times 4-x^{2}=x\times 14
-3 olish uchun 3 dan 6 ni ayirish.
-3+x\times 4-x^{2}-x\times 14=0
Ikkala tarafdan x\times 14 ni ayirish.
-3-10x-x^{2}=0
-10x ni olish uchun x\times 4 va -x\times 14 ni birlashtirish.
-x^{2}-10x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -10 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+4\left(-3\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\left(-1\right)}
4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\left(-1\right)}
100 ni -12 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\left(-1\right)}
88 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{22}}{2\left(-1\right)}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{22}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{22}+10}{-2}
x=\frac{10±2\sqrt{22}}{-2} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{22} ga qo'shish.
x=-\left(\sqrt{22}+5\right)
10+2\sqrt{22} ni -2 ga bo'lish.
x=\frac{10-2\sqrt{22}}{-2}
x=\frac{10±2\sqrt{22}}{-2} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{22} ni ayirish.
x=\sqrt{22}-5
10-2\sqrt{22} ni -2 ga bo'lish.
x=-\left(\sqrt{22}+5\right) x=\sqrt{22}-5
Tenglama yechildi.
3+x\times 4=xx+6+x\times 14
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x\times 4=x^{2}+6+x\times 14
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x\times 4-x^{2}=6+x\times 14
Ikkala tarafdan x^{2} ni ayirish.
3+x\times 4-x^{2}-x\times 14=6
Ikkala tarafdan x\times 14 ni ayirish.
3-10x-x^{2}=6
-10x ni olish uchun x\times 4 va -x\times 14 ni birlashtirish.
-10x-x^{2}=6-3
Ikkala tarafdan 3 ni ayirish.
-10x-x^{2}=3
3 olish uchun 6 dan 3 ni ayirish.
-x^{2}-10x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-10x}{-1}=\frac{3}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{10}{-1}\right)x=\frac{3}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+10x=\frac{3}{-1}
-10 ni -1 ga bo'lish.
x^{2}+10x=-3
3 ni -1 ga bo'lish.
x^{2}+10x+5^{2}=-3+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=-3+25
5 kvadratini chiqarish.
x^{2}+10x+25=22
-3 ni 25 ga qo'shish.
\left(x+5\right)^{2}=22
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{22}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{22} x+5=-\sqrt{22}
Qisqartirish.
x=\sqrt{22}-5 x=-\sqrt{22}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
3+x\times 4=xx+6+x\times 14
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x\times 4=x^{2}+6+x\times 14
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x\times 4-x^{2}=6+x\times 14
Ikkala tarafdan x^{2} ni ayirish.
3+x\times 4-x^{2}-6=x\times 14
Ikkala tarafdan 6 ni ayirish.
-3+x\times 4-x^{2}=x\times 14
-3 olish uchun 3 dan 6 ni ayirish.
-3+x\times 4-x^{2}-x\times 14=0
Ikkala tarafdan x\times 14 ni ayirish.
-3-10x-x^{2}=0
-10x ni olish uchun x\times 4 va -x\times 14 ni birlashtirish.
-x^{2}-10x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -10 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+4\left(-3\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100-12}}{2\left(-1\right)}
4 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{88}}{2\left(-1\right)}
100 ni -12 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{22}}{2\left(-1\right)}
88 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{22}}{2\left(-1\right)}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{22}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{22}+10}{-2}
x=\frac{10±2\sqrt{22}}{-2} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{22} ga qo'shish.
x=-\left(\sqrt{22}+5\right)
10+2\sqrt{22} ni -2 ga bo'lish.
x=\frac{10-2\sqrt{22}}{-2}
x=\frac{10±2\sqrt{22}}{-2} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{22} ni ayirish.
x=\sqrt{22}-5
10-2\sqrt{22} ni -2 ga bo'lish.
x=-\left(\sqrt{22}+5\right) x=\sqrt{22}-5
Tenglama yechildi.
3+x\times 4=xx+6+x\times 14
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x\times 4=x^{2}+6+x\times 14
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x\times 4-x^{2}=6+x\times 14
Ikkala tarafdan x^{2} ni ayirish.
3+x\times 4-x^{2}-x\times 14=6
Ikkala tarafdan x\times 14 ni ayirish.
3-10x-x^{2}=6
-10x ni olish uchun x\times 4 va -x\times 14 ni birlashtirish.
-10x-x^{2}=6-3
Ikkala tarafdan 3 ni ayirish.
-10x-x^{2}=3
3 olish uchun 6 dan 3 ni ayirish.
-x^{2}-10x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-10x}{-1}=\frac{3}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{10}{-1}\right)x=\frac{3}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+10x=\frac{3}{-1}
-10 ni -1 ga bo'lish.
x^{2}+10x=-3
3 ni -1 ga bo'lish.
x^{2}+10x+5^{2}=-3+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=-3+25
5 kvadratini chiqarish.
x^{2}+10x+25=22
-3 ni 25 ga qo'shish.
\left(x+5\right)^{2}=22
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{22}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=\sqrt{22} x+5=-\sqrt{22}
Qisqartirish.
x=\sqrt{22}-5 x=-\sqrt{22}-5
Tenglamaning ikkala tarafidan 5 ni ayirish.