Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6=7\left(x+1\right)x
Tenglamaning ikkala tarafini 14 ga, 7,2 ning eng kichik karralisiga ko‘paytiring.
6=\left(7x+7\right)x
7 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6=7x^{2}+7x
7x+7 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}+7x=6
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
7x^{2}+7x-6=0
Ikkala tarafdan 6 ni ayirish.
x=\frac{-7±\sqrt{7^{2}-4\times 7\left(-6\right)}}{2\times 7}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 7 ni a, 7 ni b va -6 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 7\left(-6\right)}}{2\times 7}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-28\left(-6\right)}}{2\times 7}
-4 ni 7 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+168}}{2\times 7}
-28 ni -6 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{217}}{2\times 7}
49 ni 168 ga qo'shish.
x=\frac{-7±\sqrt{217}}{14}
2 ni 7 marotabaga ko'paytirish.
x=\frac{\sqrt{217}-7}{14}
x=\frac{-7±\sqrt{217}}{14} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{217} ga qo'shish.
x=\frac{\sqrt{217}}{14}-\frac{1}{2}
-7+\sqrt{217} ni 14 ga bo'lish.
x=\frac{-\sqrt{217}-7}{14}
x=\frac{-7±\sqrt{217}}{14} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{217} ni ayirish.
x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
-7-\sqrt{217} ni 14 ga bo'lish.
x=\frac{\sqrt{217}}{14}-\frac{1}{2} x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
Tenglama yechildi.
6=7\left(x+1\right)x
Tenglamaning ikkala tarafini 14 ga, 7,2 ning eng kichik karralisiga ko‘paytiring.
6=\left(7x+7\right)x
7 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6=7x^{2}+7x
7x+7 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x^{2}+7x=6
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{7x^{2}+7x}{7}=\frac{6}{7}
Ikki tarafini 7 ga bo‘ling.
x^{2}+\frac{7}{7}x=\frac{6}{7}
7 ga bo'lish 7 ga ko'paytirishni bekor qiladi.
x^{2}+x=\frac{6}{7}
7 ni 7 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{6}{7}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{6}{7}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{31}{28}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{6}{7} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=\frac{31}{28}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{31}{28}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{217}}{14} x+\frac{1}{2}=-\frac{\sqrt{217}}{14}
Qisqartirish.
x=\frac{\sqrt{217}}{14}-\frac{1}{2} x=-\frac{\sqrt{217}}{14}-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.