Omil
-4\left(t-\left(\frac{3}{2}-\sqrt{3}\right)\right)\left(t-\left(\sqrt{3}+\frac{3}{2}\right)\right)
Baholash
3+12t-4t^{2}
Baham ko'rish
Klipbordga nusxa olish
-4t^{2}+12t+3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-12±\sqrt{144-4\left(-4\right)\times 3}}{2\left(-4\right)}
12 kvadratini chiqarish.
t=\frac{-12±\sqrt{144+16\times 3}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
t=\frac{-12±\sqrt{144+48}}{2\left(-4\right)}
16 ni 3 marotabaga ko'paytirish.
t=\frac{-12±\sqrt{192}}{2\left(-4\right)}
144 ni 48 ga qo'shish.
t=\frac{-12±8\sqrt{3}}{2\left(-4\right)}
192 ning kvadrat ildizini chiqarish.
t=\frac{-12±8\sqrt{3}}{-8}
2 ni -4 marotabaga ko'paytirish.
t=\frac{8\sqrt{3}-12}{-8}
t=\frac{-12±8\sqrt{3}}{-8} tenglamasini yeching, bunda ± musbat. -12 ni 8\sqrt{3} ga qo'shish.
t=\frac{3}{2}-\sqrt{3}
-12+8\sqrt{3} ni -8 ga bo'lish.
t=\frac{-8\sqrt{3}-12}{-8}
t=\frac{-12±8\sqrt{3}}{-8} tenglamasini yeching, bunda ± manfiy. -12 dan 8\sqrt{3} ni ayirish.
t=\sqrt{3}+\frac{3}{2}
-12-8\sqrt{3} ni -8 ga bo'lish.
-4t^{2}+12t+3=-4\left(t-\left(\frac{3}{2}-\sqrt{3}\right)\right)\left(t-\left(\sqrt{3}+\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3}{2}-\sqrt{3} ga va x_{2} uchun \frac{3}{2}+\sqrt{3} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}