r uchun yechish
r=\frac{\sqrt{15}}{7}\approx 0,553283335
r=-\frac{\sqrt{15}}{7}\approx -0,553283335
Baham ko'rish
Klipbordga nusxa olish
15=\frac{1}{2}\times 98r^{2}
15 olish uchun 3 va 12'ni qo'shing.
15=49r^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
49r^{2}=15
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
r^{2}=\frac{15}{49}
Ikki tarafini 49 ga bo‘ling.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
15=\frac{1}{2}\times 98r^{2}
15 olish uchun 3 va 12'ni qo'shing.
15=49r^{2}
49 hosil qilish uchun \frac{1}{2} va 98 ni ko'paytirish.
49r^{2}=15
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
49r^{2}-15=0
Ikkala tarafdan 15 ni ayirish.
r=\frac{0±\sqrt{0^{2}-4\times 49\left(-15\right)}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, 0 ni b va -15 ni c bilan almashtiring.
r=\frac{0±\sqrt{-4\times 49\left(-15\right)}}{2\times 49}
0 kvadratini chiqarish.
r=\frac{0±\sqrt{-196\left(-15\right)}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
r=\frac{0±\sqrt{2940}}{2\times 49}
-196 ni -15 marotabaga ko'paytirish.
r=\frac{0±14\sqrt{15}}{2\times 49}
2940 ning kvadrat ildizini chiqarish.
r=\frac{0±14\sqrt{15}}{98}
2 ni 49 marotabaga ko'paytirish.
r=\frac{\sqrt{15}}{7}
r=\frac{0±14\sqrt{15}}{98} tenglamasini yeching, bunda ± musbat.
r=-\frac{\sqrt{15}}{7}
r=\frac{0±14\sqrt{15}}{98} tenglamasini yeching, bunda ± manfiy.
r=\frac{\sqrt{15}}{7} r=-\frac{\sqrt{15}}{7}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}