a uchun yechish
a=1
Viktorina
Linear Equation
5xshash muammolar:
3 + \frac { 15 } { 2 + \frac { 4 } { 1 + \frac { 3 } { a } } } = 8
Baham ko'rish
Klipbordga nusxa olish
3+\frac{15}{2+\frac{4}{\frac{a}{a}+\frac{3}{a}}}=8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{a}{a} marotabaga ko'paytirish.
3+\frac{15}{2+\frac{4}{\frac{a+3}{a}}}=8
\frac{a}{a} va \frac{3}{a} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
3+\frac{15}{2+\frac{4a}{a+3}}=8
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 4 ni \frac{a+3}{a} ga bo'lish 4 ga k'paytirish \frac{a+3}{a} ga qaytarish.
3+\frac{15}{\frac{2\left(a+3\right)}{a+3}+\frac{4a}{a+3}}=8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{a+3}{a+3} marotabaga ko'paytirish.
3+\frac{15}{\frac{2\left(a+3\right)+4a}{a+3}}=8
\frac{2\left(a+3\right)}{a+3} va \frac{4a}{a+3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
3+\frac{15}{\frac{2a+6+4a}{a+3}}=8
2\left(a+3\right)+4a ichidagi ko‘paytirishlarni bajaring.
3+\frac{15}{\frac{6a+6}{a+3}}=8
2a+6+4a kabi iboralarga o‘xshab birlashtiring.
3+\frac{15\left(a+3\right)}{6a+6}=8
a qiymati -3 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. 15 ni \frac{6a+6}{a+3} ga bo'lish 15 ga k'paytirish \frac{6a+6}{a+3} ga qaytarish.
3+\frac{15\left(a+3\right)}{6\left(a+1\right)}=8
\frac{15\left(a+3\right)}{6a+6} ichida hali faktorlanmagan ifodalarni faktorlang.
3+\frac{5\left(a+3\right)}{2\left(a+1\right)}=8
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{3\times 2\left(a+1\right)}{2\left(a+1\right)}+\frac{5\left(a+3\right)}{2\left(a+1\right)}=8
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 ni \frac{2\left(a+1\right)}{2\left(a+1\right)} marotabaga ko'paytirish.
\frac{3\times 2\left(a+1\right)+5\left(a+3\right)}{2\left(a+1\right)}=8
\frac{3\times 2\left(a+1\right)}{2\left(a+1\right)} va \frac{5\left(a+3\right)}{2\left(a+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{6a+6+5a+15}{2\left(a+1\right)}=8
3\times 2\left(a+1\right)+5\left(a+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{11a+21}{2\left(a+1\right)}=8
6a+6+5a+15 kabi iboralarga o‘xshab birlashtiring.
\frac{11a+21}{2a+2}=8
2 ga a+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
11a+21=16\left(a+1\right)
a qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(a+1\right) ga ko'paytirish.
11a+21=16a+16
16 ga a+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
11a+21-16a=16
Ikkala tarafdan 16a ni ayirish.
-5a+21=16
-5a ni olish uchun 11a va -16a ni birlashtirish.
-5a=16-21
Ikkala tarafdan 21 ni ayirish.
-5a=-5
-5 olish uchun 16 dan 21 ni ayirish.
a=\frac{-5}{-5}
Ikki tarafini -5 ga bo‘ling.
a=1
1 ni olish uchun -5 ni -5 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}