Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-2x^{2}+2x=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-2x^{2}+2x-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-2x^{2}+2x-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 2 ni b va -12 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-12\right)}}{2\left(-2\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+8\left(-12\right)}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-96}}{2\left(-2\right)}
8 ni -12 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-92}}{2\left(-2\right)}
4 ni -96 ga qo'shish.
x=\frac{-2±2\sqrt{23}i}{2\left(-2\right)}
-92 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{23}i}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{23}i}{-4}
x=\frac{-2±2\sqrt{23}i}{-4} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i+1}{2}
-2+2i\sqrt{23} ni -4 ga bo'lish.
x=\frac{-2\sqrt{23}i-2}{-4}
x=\frac{-2±2\sqrt{23}i}{-4} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{23} ni ayirish.
x=\frac{1+\sqrt{23}i}{2}
-2-2i\sqrt{23} ni -4 ga bo'lish.
x=\frac{-\sqrt{23}i+1}{2} x=\frac{1+\sqrt{23}i}{2}
Tenglama yechildi.
-2x^{2}+2x=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}+2x}{-2}=\frac{12}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\frac{2}{-2}x=\frac{12}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{12}{-2}
2 ni -2 ga bo'lish.
x^{2}-x=-6
12 ni -2 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-6+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=-6+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=-\frac{23}{4}
-6 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=-\frac{23}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{23}i}{2} x-\frac{1}{2}=-\frac{\sqrt{23}i}{2}
Qisqartirish.
x=\frac{1+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.