Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2xx-1=3x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
2x^{2}-1=3x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x^{2}-1-3x=0
Ikkala tarafdan 3x ni ayirish.
2x^{2}-3x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -3 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-1\right)}}{2\times 2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-1\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+8}}{2\times 2}
-8 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{17}}{2\times 2}
9 ni 8 ga qo'shish.
x=\frac{3±\sqrt{17}}{2\times 2}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{17}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{\sqrt{17}+3}{4}
x=\frac{3±\sqrt{17}}{4} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{17} ga qo'shish.
x=\frac{3-\sqrt{17}}{4}
x=\frac{3±\sqrt{17}}{4} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{17} ni ayirish.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
Tenglama yechildi.
2xx-1=3x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
2x^{2}-1=3x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x^{2}-1-3x=0
Ikkala tarafdan 3x ni ayirish.
2x^{2}-3x=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2x^{2}-3x}{2}=\frac{1}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}-\frac{3}{2}x=\frac{1}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{1}{2}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{17}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{4}\right)^{2}=\frac{17}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{4}=\frac{\sqrt{17}}{4} x-\frac{3}{4}=-\frac{\sqrt{17}}{4}
Qisqartirish.
x=\frac{\sqrt{17}+3}{4} x=\frac{3-\sqrt{17}}{4}
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.