x uchun yechish
x=\frac{1}{3}\approx 0,333333333
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
18x^{2}-6x=0
2x ga 9x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(18x-6\right)=0
x omili.
x=0 x=\frac{1}{3}
Tenglamani yechish uchun x=0 va 18x-6=0 ni yeching.
18x^{2}-6x=0
2x ga 9x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 18}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 18 ni a, -6 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±6}{2\times 18}
\left(-6\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{6±6}{2\times 18}
-6 ning teskarisi 6 ga teng.
x=\frac{6±6}{36}
2 ni 18 marotabaga ko'paytirish.
x=\frac{12}{36}
x=\frac{6±6}{36} tenglamasini yeching, bunda ± musbat. 6 ni 6 ga qo'shish.
x=\frac{1}{3}
\frac{12}{36} ulushini 12 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{36}
x=\frac{6±6}{36} tenglamasini yeching, bunda ± manfiy. 6 dan 6 ni ayirish.
x=0
0 ni 36 ga bo'lish.
x=\frac{1}{3} x=0
Tenglama yechildi.
18x^{2}-6x=0
2x ga 9x-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{18x^{2}-6x}{18}=\frac{0}{18}
Ikki tarafini 18 ga bo‘ling.
x^{2}+\left(-\frac{6}{18}\right)x=\frac{0}{18}
18 ga bo'lish 18 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=\frac{0}{18}
\frac{-6}{18} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x=0
0 ni 18 ga bo'lish.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Qisqartirish.
x=\frac{1}{3} x=0
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}