Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}-2x=0
2x ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(6x-2\right)=0
x omili.
x=0 x=\frac{1}{3}
Tenglamani yechish uchun x=0 va 6x-2=0 ni yeching.
6x^{2}-2x=0
2x ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -2 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±2}{2\times 6}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{2±2}{2\times 6}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{4}{12}
x=\frac{2±2}{12} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
x=\frac{1}{3}
\frac{4}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{12}
x=\frac{2±2}{12} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
x=0
0 ni 12 ga bo'lish.
x=\frac{1}{3} x=0
Tenglama yechildi.
6x^{2}-2x=0
2x ga 3x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{6x^{2}-2x}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x=\frac{0}{6}
\frac{-2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}x=0
0 ni 6 ga bo'lish.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Qisqartirish.
x=\frac{1}{3} x=0
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.