Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

76x-4x^{2}=180
2x ga 38-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76x-4x^{2}-180=0
Ikkala tarafdan 180 ni ayirish.
-4x^{2}+76x-180=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-76±\sqrt{76^{2}-4\left(-4\right)\left(-180\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 76 ni b va -180 ni c bilan almashtiring.
x=\frac{-76±\sqrt{5776-4\left(-4\right)\left(-180\right)}}{2\left(-4\right)}
76 kvadratini chiqarish.
x=\frac{-76±\sqrt{5776+16\left(-180\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-76±\sqrt{5776-2880}}{2\left(-4\right)}
16 ni -180 marotabaga ko'paytirish.
x=\frac{-76±\sqrt{2896}}{2\left(-4\right)}
5776 ni -2880 ga qo'shish.
x=\frac{-76±4\sqrt{181}}{2\left(-4\right)}
2896 ning kvadrat ildizini chiqarish.
x=\frac{-76±4\sqrt{181}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{4\sqrt{181}-76}{-8}
x=\frac{-76±4\sqrt{181}}{-8} tenglamasini yeching, bunda ± musbat. -76 ni 4\sqrt{181} ga qo'shish.
x=\frac{19-\sqrt{181}}{2}
-76+4\sqrt{181} ni -8 ga bo'lish.
x=\frac{-4\sqrt{181}-76}{-8}
x=\frac{-76±4\sqrt{181}}{-8} tenglamasini yeching, bunda ± manfiy. -76 dan 4\sqrt{181} ni ayirish.
x=\frac{\sqrt{181}+19}{2}
-76-4\sqrt{181} ni -8 ga bo'lish.
x=\frac{19-\sqrt{181}}{2} x=\frac{\sqrt{181}+19}{2}
Tenglama yechildi.
76x-4x^{2}=180
2x ga 38-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-4x^{2}+76x=180
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-4x^{2}+76x}{-4}=\frac{180}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{76}{-4}x=\frac{180}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-19x=\frac{180}{-4}
76 ni -4 ga bo'lish.
x^{2}-19x=-45
180 ni -4 ga bo'lish.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-45+\left(-\frac{19}{2}\right)^{2}
-19 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{2} olish uchun. Keyin, -\frac{19}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-19x+\frac{361}{4}=-45+\frac{361}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{2} kvadratini chiqarish.
x^{2}-19x+\frac{361}{4}=\frac{181}{4}
-45 ni \frac{361}{4} ga qo'shish.
\left(x-\frac{19}{2}\right)^{2}=\frac{181}{4}
x^{2}-19x+\frac{361}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{\frac{181}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{2}=\frac{\sqrt{181}}{2} x-\frac{19}{2}=-\frac{\sqrt{181}}{2}
Qisqartirish.
x=\frac{\sqrt{181}+19}{2} x=\frac{19-\sqrt{181}}{2}
\frac{19}{2} ni tenglamaning ikkala tarafiga qo'shish.