Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x+1-4x^{2}=4x+5
Ikkala tarafdan 4x^{2} ni ayirish.
2x+1-4x^{2}-4x=5
Ikkala tarafdan 4x ni ayirish.
-2x+1-4x^{2}=5
-2x ni olish uchun 2x va -4x ni birlashtirish.
-2x+1-4x^{2}-5=0
Ikkala tarafdan 5 ni ayirish.
-2x-4-4x^{2}=0
-4 olish uchun 1 dan 5 ni ayirish.
-4x^{2}-2x-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, -2 ni b va -4 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+16\left(-4\right)}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4-64}}{2\left(-4\right)}
16 ni -4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{-60}}{2\left(-4\right)}
4 ni -64 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{15}i}{2\left(-4\right)}
-60 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{15}i}{2\left(-4\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2\sqrt{15}i}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{2+2\sqrt{15}i}{-8}
x=\frac{2±2\sqrt{15}i}{-8} tenglamasini yeching, bunda ± musbat. 2 ni 2i\sqrt{15} ga qo'shish.
x=\frac{-\sqrt{15}i-1}{4}
2+2i\sqrt{15} ni -8 ga bo'lish.
x=\frac{-2\sqrt{15}i+2}{-8}
x=\frac{2±2\sqrt{15}i}{-8} tenglamasini yeching, bunda ± manfiy. 2 dan 2i\sqrt{15} ni ayirish.
x=\frac{-1+\sqrt{15}i}{4}
2-2i\sqrt{15} ni -8 ga bo'lish.
x=\frac{-\sqrt{15}i-1}{4} x=\frac{-1+\sqrt{15}i}{4}
Tenglama yechildi.
2x+1-4x^{2}=4x+5
Ikkala tarafdan 4x^{2} ni ayirish.
2x+1-4x^{2}-4x=5
Ikkala tarafdan 4x ni ayirish.
-2x+1-4x^{2}=5
-2x ni olish uchun 2x va -4x ni birlashtirish.
-2x-4x^{2}=5-1
Ikkala tarafdan 1 ni ayirish.
-2x-4x^{2}=4
4 olish uchun 5 dan 1 ni ayirish.
-4x^{2}-2x=4
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-4x^{2}-2x}{-4}=\frac{4}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\left(-\frac{2}{-4}\right)x=\frac{4}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{2}x=\frac{4}{-4}
\frac{-2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{2}x=-1
4 ni -4 ga bo'lish.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=-1+\left(\frac{1}{4}\right)^{2}
\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{4} olish uchun. Keyin, \frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-1+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{4} kvadratini chiqarish.
x^{2}+\frac{1}{2}x+\frac{1}{16}=-\frac{15}{16}
-1 ni \frac{1}{16} ga qo'shish.
\left(x+\frac{1}{4}\right)^{2}=-\frac{15}{16}
x^{2}+\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{4}=\frac{\sqrt{15}i}{4} x+\frac{1}{4}=-\frac{\sqrt{15}i}{4}
Qisqartirish.
x=\frac{-1+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i-1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.