x uchun yechish (complex solution)
x=\sqrt{17}-1\approx 3,123105626
x=-\left(\sqrt{17}+1\right)\approx -5,123105626
x uchun yechish
x=\sqrt{17}-1\approx 3,123105626
x=-\sqrt{17}-1\approx -5,123105626
Grafik
Baham ko'rish
Klipbordga nusxa olish
x^{2}+2x+36=52
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x^{2}+2x+36-52=52-52
Tenglamaning ikkala tarafidan 52 ni ayirish.
x^{2}+2x+36-52=0
O‘zidan 52 ayirilsa 0 qoladi.
x^{2}+2x-16=0
36 dan 52 ni ayirish.
x=\frac{-2±\sqrt{2^{2}-4\left(-16\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -16 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-16\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+64}}{2}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{68}}{2}
4 ni 64 ga qo'shish.
x=\frac{-2±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-2}{2}
x=\frac{-2±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-1
-2+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-2}{2}
x=\frac{-2±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-1
-2-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-1 x=-\sqrt{17}-1
Tenglama yechildi.
x^{2}+2x+36=52
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+36-36=52-36
Tenglamaning ikkala tarafidan 36 ni ayirish.
x^{2}+2x=52-36
O‘zidan 36 ayirilsa 0 qoladi.
x^{2}+2x=16
52 dan 36 ni ayirish.
x^{2}+2x+1^{2}=16+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=16+1
1 kvadratini chiqarish.
x^{2}+2x+1=17
16 ni 1 ga qo'shish.
\left(x+1\right)^{2}=17
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{17} x+1=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-1 x=-\sqrt{17}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
2x+x^{2}-4+8\times 5=52
-4 olish uchun 6 dan 10 ni ayirish.
2x+x^{2}-4+40=52
40 hosil qilish uchun 8 va 5 ni ko'paytirish.
2x+x^{2}+36=52
36 olish uchun -4 va 40'ni qo'shing.
2x+x^{2}+36-52=0
Ikkala tarafdan 52 ni ayirish.
2x+x^{2}-16=0
-16 olish uchun 36 dan 52 ni ayirish.
x^{2}+2x-16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-16\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 2 ni b va -16 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-16\right)}}{2}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+64}}{2}
-4 ni -16 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{68}}{2}
4 ni 64 ga qo'shish.
x=\frac{-2±2\sqrt{17}}{2}
68 ning kvadrat ildizini chiqarish.
x=\frac{2\sqrt{17}-2}{2}
x=\frac{-2±2\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{17} ga qo'shish.
x=\sqrt{17}-1
-2+2\sqrt{17} ni 2 ga bo'lish.
x=\frac{-2\sqrt{17}-2}{2}
x=\frac{-2±2\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{17} ni ayirish.
x=-\sqrt{17}-1
-2-2\sqrt{17} ni 2 ga bo'lish.
x=\sqrt{17}-1 x=-\sqrt{17}-1
Tenglama yechildi.
2x+x^{2}-4+8\times 5=52
-4 olish uchun 6 dan 10 ni ayirish.
2x+x^{2}-4+40=52
40 hosil qilish uchun 8 va 5 ni ko'paytirish.
2x+x^{2}+36=52
36 olish uchun -4 va 40'ni qo'shing.
2x+x^{2}=52-36
Ikkala tarafdan 36 ni ayirish.
2x+x^{2}=16
16 olish uchun 52 dan 36 ni ayirish.
x^{2}+2x=16
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+2x+1^{2}=16+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=16+1
1 kvadratini chiqarish.
x^{2}+2x+1=17
16 ni 1 ga qo'shish.
\left(x+1\right)^{2}=17
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{17}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{17} x+1=-\sqrt{17}
Qisqartirish.
x=\sqrt{17}-1 x=-\sqrt{17}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}