x uchun yechish
x = \frac{9 \sqrt{3709641} + 1911}{14750} \approx 1,304771899
x=\frac{1911-9\sqrt{3709641}}{14750}\approx -1,045653255
Grafik
Baham ko'rish
Klipbordga nusxa olish
29500x^{2}-7644x=40248
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
29500x^{2}-7644x-40248=40248-40248
Tenglamaning ikkala tarafidan 40248 ni ayirish.
29500x^{2}-7644x-40248=0
O‘zidan 40248 ayirilsa 0 qoladi.
x=\frac{-\left(-7644\right)±\sqrt{\left(-7644\right)^{2}-4\times 29500\left(-40248\right)}}{2\times 29500}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 29500 ni a, -7644 ni b va -40248 ni c bilan almashtiring.
x=\frac{-\left(-7644\right)±\sqrt{58430736-4\times 29500\left(-40248\right)}}{2\times 29500}
-7644 kvadratini chiqarish.
x=\frac{-\left(-7644\right)±\sqrt{58430736-118000\left(-40248\right)}}{2\times 29500}
-4 ni 29500 marotabaga ko'paytirish.
x=\frac{-\left(-7644\right)±\sqrt{58430736+4749264000}}{2\times 29500}
-118000 ni -40248 marotabaga ko'paytirish.
x=\frac{-\left(-7644\right)±\sqrt{4807694736}}{2\times 29500}
58430736 ni 4749264000 ga qo'shish.
x=\frac{-\left(-7644\right)±36\sqrt{3709641}}{2\times 29500}
4807694736 ning kvadrat ildizini chiqarish.
x=\frac{7644±36\sqrt{3709641}}{2\times 29500}
-7644 ning teskarisi 7644 ga teng.
x=\frac{7644±36\sqrt{3709641}}{59000}
2 ni 29500 marotabaga ko'paytirish.
x=\frac{36\sqrt{3709641}+7644}{59000}
x=\frac{7644±36\sqrt{3709641}}{59000} tenglamasini yeching, bunda ± musbat. 7644 ni 36\sqrt{3709641} ga qo'shish.
x=\frac{9\sqrt{3709641}+1911}{14750}
7644+36\sqrt{3709641} ni 59000 ga bo'lish.
x=\frac{7644-36\sqrt{3709641}}{59000}
x=\frac{7644±36\sqrt{3709641}}{59000} tenglamasini yeching, bunda ± manfiy. 7644 dan 36\sqrt{3709641} ni ayirish.
x=\frac{1911-9\sqrt{3709641}}{14750}
7644-36\sqrt{3709641} ni 59000 ga bo'lish.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
Tenglama yechildi.
29500x^{2}-7644x=40248
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{29500x^{2}-7644x}{29500}=\frac{40248}{29500}
Ikki tarafini 29500 ga bo‘ling.
x^{2}+\left(-\frac{7644}{29500}\right)x=\frac{40248}{29500}
29500 ga bo'lish 29500 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1911}{7375}x=\frac{40248}{29500}
\frac{-7644}{29500} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1911}{7375}x=\frac{10062}{7375}
\frac{40248}{29500} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1911}{7375}x+\left(-\frac{1911}{14750}\right)^{2}=\frac{10062}{7375}+\left(-\frac{1911}{14750}\right)^{2}
-\frac{1911}{7375} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1911}{14750} olish uchun. Keyin, -\frac{1911}{14750} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{10062}{7375}+\frac{3651921}{217562500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1911}{14750} kvadratini chiqarish.
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500}=\frac{300480921}{217562500}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{10062}{7375} ni \frac{3651921}{217562500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1911}{14750}\right)^{2}=\frac{300480921}{217562500}
x^{2}-\frac{1911}{7375}x+\frac{3651921}{217562500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1911}{14750}\right)^{2}}=\sqrt{\frac{300480921}{217562500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1911}{14750}=\frac{9\sqrt{3709641}}{14750} x-\frac{1911}{14750}=-\frac{9\sqrt{3709641}}{14750}
Qisqartirish.
x=\frac{9\sqrt{3709641}+1911}{14750} x=\frac{1911-9\sqrt{3709641}}{14750}
\frac{1911}{14750} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}