x uchun yechish (complex solution)
x=\frac{-4+\sqrt{187}i}{29}\approx -0,137931034+0,471544632i
x=\frac{-\sqrt{187}i-4}{29}\approx -0,137931034-0,471544632i
Grafik
Baham ko'rish
Klipbordga nusxa olish
29x^{2}+8x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 29\times 7}}{2\times 29}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 29 ni a, 8 ni b va 7 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 29\times 7}}{2\times 29}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-116\times 7}}{2\times 29}
-4 ni 29 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-812}}{2\times 29}
-116 ni 7 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{-748}}{2\times 29}
64 ni -812 ga qo'shish.
x=\frac{-8±2\sqrt{187}i}{2\times 29}
-748 ning kvadrat ildizini chiqarish.
x=\frac{-8±2\sqrt{187}i}{58}
2 ni 29 marotabaga ko'paytirish.
x=\frac{-8+2\sqrt{187}i}{58}
x=\frac{-8±2\sqrt{187}i}{58} tenglamasini yeching, bunda ± musbat. -8 ni 2i\sqrt{187} ga qo'shish.
x=\frac{-4+\sqrt{187}i}{29}
-8+2i\sqrt{187} ni 58 ga bo'lish.
x=\frac{-2\sqrt{187}i-8}{58}
x=\frac{-8±2\sqrt{187}i}{58} tenglamasini yeching, bunda ± manfiy. -8 dan 2i\sqrt{187} ni ayirish.
x=\frac{-\sqrt{187}i-4}{29}
-8-2i\sqrt{187} ni 58 ga bo'lish.
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
Tenglama yechildi.
29x^{2}+8x+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
29x^{2}+8x+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
29x^{2}+8x=-7
O‘zidan 7 ayirilsa 0 qoladi.
\frac{29x^{2}+8x}{29}=-\frac{7}{29}
Ikki tarafini 29 ga bo‘ling.
x^{2}+\frac{8}{29}x=-\frac{7}{29}
29 ga bo'lish 29 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{29}x+\left(\frac{4}{29}\right)^{2}=-\frac{7}{29}+\left(\frac{4}{29}\right)^{2}
\frac{8}{29} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{29} olish uchun. Keyin, \frac{4}{29} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{7}{29}+\frac{16}{841}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{29} kvadratini chiqarish.
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{187}{841}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{7}{29} ni \frac{16}{841} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{29}\right)^{2}=-\frac{187}{841}
x^{2}+\frac{8}{29}x+\frac{16}{841} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{29}\right)^{2}}=\sqrt{-\frac{187}{841}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{29}=\frac{\sqrt{187}i}{29} x+\frac{4}{29}=-\frac{\sqrt{187}i}{29}
Qisqartirish.
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
Tenglamaning ikkala tarafidan \frac{4}{29} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}