x uchun yechish
x = \frac{\sqrt{85} + 1}{7} \approx 1,459934922
x=\frac{1-\sqrt{85}}{7}\approx -1,174220637
Grafik
Baham ko'rish
Klipbordga nusxa olish
28x^{2}-8x-48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 28\left(-48\right)}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, -8 ni b va -48 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 28\left(-48\right)}}{2\times 28}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-112\left(-48\right)}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+5376}}{2\times 28}
-112 ni -48 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{5440}}{2\times 28}
64 ni 5376 ga qo'shish.
x=\frac{-\left(-8\right)±8\sqrt{85}}{2\times 28}
5440 ning kvadrat ildizini chiqarish.
x=\frac{8±8\sqrt{85}}{2\times 28}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8\sqrt{85}}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{8\sqrt{85}+8}{56}
x=\frac{8±8\sqrt{85}}{56} tenglamasini yeching, bunda ± musbat. 8 ni 8\sqrt{85} ga qo'shish.
x=\frac{\sqrt{85}+1}{7}
8+8\sqrt{85} ni 56 ga bo'lish.
x=\frac{8-8\sqrt{85}}{56}
x=\frac{8±8\sqrt{85}}{56} tenglamasini yeching, bunda ± manfiy. 8 dan 8\sqrt{85} ni ayirish.
x=\frac{1-\sqrt{85}}{7}
8-8\sqrt{85} ni 56 ga bo'lish.
x=\frac{\sqrt{85}+1}{7} x=\frac{1-\sqrt{85}}{7}
Tenglama yechildi.
28x^{2}-8x-48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
28x^{2}-8x-48-\left(-48\right)=-\left(-48\right)
48 ni tenglamaning ikkala tarafiga qo'shish.
28x^{2}-8x=-\left(-48\right)
O‘zidan -48 ayirilsa 0 qoladi.
28x^{2}-8x=48
0 dan -48 ni ayirish.
\frac{28x^{2}-8x}{28}=\frac{48}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\left(-\frac{8}{28}\right)x=\frac{48}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{7}x=\frac{48}{28}
\frac{-8}{28} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{7}x=\frac{12}{7}
\frac{48}{28} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{7}x+\left(-\frac{1}{7}\right)^{2}=\frac{12}{7}+\left(-\frac{1}{7}\right)^{2}
-\frac{2}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{7} olish uchun. Keyin, -\frac{1}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{12}{7}+\frac{1}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{7} kvadratini chiqarish.
x^{2}-\frac{2}{7}x+\frac{1}{49}=\frac{85}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{7} ni \frac{1}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{7}\right)^{2}=\frac{85}{49}
x^{2}-\frac{2}{7}x+\frac{1}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{7}\right)^{2}}=\sqrt{\frac{85}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{7}=\frac{\sqrt{85}}{7} x-\frac{1}{7}=-\frac{\sqrt{85}}{7}
Qisqartirish.
x=\frac{\sqrt{85}+1}{7} x=\frac{1-\sqrt{85}}{7}
\frac{1}{7} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}