x uchun yechish
x = \frac{3105 \sqrt{7}}{14} \approx 586,789844347
x = -\frac{3105 \sqrt{7}}{14} \approx -586,789844347
Grafik
Baham ko'rish
Klipbordga nusxa olish
28x^{2}=9641025
2 daraja ko‘rsatkichini 3105 ga hisoblang va 9641025 ni qiymatni oling.
x^{2}=\frac{9641025}{28}
Ikki tarafini 28 ga bo‘ling.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
28x^{2}=9641025
2 daraja ko‘rsatkichini 3105 ga hisoblang va 9641025 ni qiymatni oling.
28x^{2}-9641025=0
Ikkala tarafdan 9641025 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 28\left(-9641025\right)}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 0 ni b va -9641025 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 28\left(-9641025\right)}}{2\times 28}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-112\left(-9641025\right)}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1079794800}}{2\times 28}
-112 ni -9641025 marotabaga ko'paytirish.
x=\frac{0±12420\sqrt{7}}{2\times 28}
1079794800 ning kvadrat ildizini chiqarish.
x=\frac{0±12420\sqrt{7}}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{3105\sqrt{7}}{14}
x=\frac{0±12420\sqrt{7}}{56} tenglamasini yeching, bunda ± musbat.
x=-\frac{3105\sqrt{7}}{14}
x=\frac{0±12420\sqrt{7}}{56} tenglamasini yeching, bunda ± manfiy.
x=\frac{3105\sqrt{7}}{14} x=-\frac{3105\sqrt{7}}{14}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}