Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(28x+7\right)=0
x omili.
x=0 x=-\frac{1}{4}
Tenglamani yechish uchun x=0 va 28x+7=0 ni yeching.
28x^{2}+7x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 7 ni b va 0 ni c bilan almashtiring.
x=\frac{-7±7}{2\times 28}
7^{2} ning kvadrat ildizini chiqarish.
x=\frac{-7±7}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{0}{56}
x=\frac{-7±7}{56} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
x=0
0 ni 56 ga bo'lish.
x=-\frac{14}{56}
x=\frac{-7±7}{56} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
x=-\frac{1}{4}
\frac{-14}{56} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{4}
Tenglama yechildi.
28x^{2}+7x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{28x^{2}+7x}{28}=\frac{0}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\frac{7}{28}x=\frac{0}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{4}x=\frac{0}{28}
\frac{7}{28} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{4}x=0
0 ni 28 ga bo'lish.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
\left(x+\frac{1}{8}\right)^{2}=\frac{1}{64}
x^{2}+\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{8}=\frac{1}{8} x+\frac{1}{8}=-\frac{1}{8}
Qisqartirish.
x=0 x=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.