x uchun yechish
x=-\frac{1}{4}=-0,25
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(28x+7\right)=0
x omili.
x=0 x=-\frac{1}{4}
Tenglamani yechish uchun x=0 va 28x+7=0 ni yeching.
28x^{2}+7x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 7 ni b va 0 ni c bilan almashtiring.
x=\frac{-7±7}{2\times 28}
7^{2} ning kvadrat ildizini chiqarish.
x=\frac{-7±7}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{0}{56}
x=\frac{-7±7}{56} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
x=0
0 ni 56 ga bo'lish.
x=-\frac{14}{56}
x=\frac{-7±7}{56} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
x=-\frac{1}{4}
\frac{-14}{56} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{4}
Tenglama yechildi.
28x^{2}+7x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{28x^{2}+7x}{28}=\frac{0}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\frac{7}{28}x=\frac{0}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{4}x=\frac{0}{28}
\frac{7}{28} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{4}x=0
0 ni 28 ga bo'lish.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
\left(x+\frac{1}{8}\right)^{2}=\frac{1}{64}
x^{2}+\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{8}=\frac{1}{8} x+\frac{1}{8}=-\frac{1}{8}
Qisqartirish.
x=0 x=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}