x uchun yechish (complex solution)
x=\frac{-13+\sqrt{503}i}{56}\approx -0,232142857+0,400493955i
x=\frac{-\sqrt{503}i-13}{56}\approx -0,232142857-0,400493955i
Grafik
Baham ko'rish
Klipbordga nusxa olish
28x^{2}+13x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-13±\sqrt{13^{2}-4\times 28\times 6}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 13 ni b va 6 ni c bilan almashtiring.
x=\frac{-13±\sqrt{169-4\times 28\times 6}}{2\times 28}
13 kvadratini chiqarish.
x=\frac{-13±\sqrt{169-112\times 6}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{169-672}}{2\times 28}
-112 ni 6 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{-503}}{2\times 28}
169 ni -672 ga qo'shish.
x=\frac{-13±\sqrt{503}i}{2\times 28}
-503 ning kvadrat ildizini chiqarish.
x=\frac{-13±\sqrt{503}i}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{-13+\sqrt{503}i}{56}
x=\frac{-13±\sqrt{503}i}{56} tenglamasini yeching, bunda ± musbat. -13 ni i\sqrt{503} ga qo'shish.
x=\frac{-\sqrt{503}i-13}{56}
x=\frac{-13±\sqrt{503}i}{56} tenglamasini yeching, bunda ± manfiy. -13 dan i\sqrt{503} ni ayirish.
x=\frac{-13+\sqrt{503}i}{56} x=\frac{-\sqrt{503}i-13}{56}
Tenglama yechildi.
28x^{2}+13x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
28x^{2}+13x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
28x^{2}+13x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{28x^{2}+13x}{28}=-\frac{6}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\frac{13}{28}x=-\frac{6}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{13}{28}x=-\frac{3}{14}
\frac{-6}{28} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{13}{28}x+\left(\frac{13}{56}\right)^{2}=-\frac{3}{14}+\left(\frac{13}{56}\right)^{2}
\frac{13}{28} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{13}{56} olish uchun. Keyin, \frac{13}{56} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{13}{28}x+\frac{169}{3136}=-\frac{3}{14}+\frac{169}{3136}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{13}{56} kvadratini chiqarish.
x^{2}+\frac{13}{28}x+\frac{169}{3136}=-\frac{503}{3136}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{14} ni \frac{169}{3136} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{13}{56}\right)^{2}=-\frac{503}{3136}
x^{2}+\frac{13}{28}x+\frac{169}{3136} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{13}{56}\right)^{2}}=\sqrt{-\frac{503}{3136}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{13}{56}=\frac{\sqrt{503}i}{56} x+\frac{13}{56}=-\frac{\sqrt{503}i}{56}
Qisqartirish.
x=\frac{-13+\sqrt{503}i}{56} x=\frac{-\sqrt{503}i-13}{56}
Tenglamaning ikkala tarafidan \frac{13}{56} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}