Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

28x^{2}+13x+6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-13±\sqrt{13^{2}-4\times 28\times 6}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 13 ni b va 6 ni c bilan almashtiring.
x=\frac{-13±\sqrt{169-4\times 28\times 6}}{2\times 28}
13 kvadratini chiqarish.
x=\frac{-13±\sqrt{169-112\times 6}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{169-672}}{2\times 28}
-112 ni 6 marotabaga ko'paytirish.
x=\frac{-13±\sqrt{-503}}{2\times 28}
169 ni -672 ga qo'shish.
x=\frac{-13±\sqrt{503}i}{2\times 28}
-503 ning kvadrat ildizini chiqarish.
x=\frac{-13±\sqrt{503}i}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{-13+\sqrt{503}i}{56}
x=\frac{-13±\sqrt{503}i}{56} tenglamasini yeching, bunda ± musbat. -13 ni i\sqrt{503} ga qo'shish.
x=\frac{-\sqrt{503}i-13}{56}
x=\frac{-13±\sqrt{503}i}{56} tenglamasini yeching, bunda ± manfiy. -13 dan i\sqrt{503} ni ayirish.
x=\frac{-13+\sqrt{503}i}{56} x=\frac{-\sqrt{503}i-13}{56}
Tenglama yechildi.
28x^{2}+13x+6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
28x^{2}+13x+6-6=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
28x^{2}+13x=-6
O‘zidan 6 ayirilsa 0 qoladi.
\frac{28x^{2}+13x}{28}=-\frac{6}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\frac{13}{28}x=-\frac{6}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{13}{28}x=-\frac{3}{14}
\frac{-6}{28} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{13}{28}x+\left(\frac{13}{56}\right)^{2}=-\frac{3}{14}+\left(\frac{13}{56}\right)^{2}
\frac{13}{28} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{13}{56} olish uchun. Keyin, \frac{13}{56} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{13}{28}x+\frac{169}{3136}=-\frac{3}{14}+\frac{169}{3136}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{13}{56} kvadratini chiqarish.
x^{2}+\frac{13}{28}x+\frac{169}{3136}=-\frac{503}{3136}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{14} ni \frac{169}{3136} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{13}{56}\right)^{2}=-\frac{503}{3136}
x^{2}+\frac{13}{28}x+\frac{169}{3136} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{13}{56}\right)^{2}}=\sqrt{-\frac{503}{3136}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{13}{56}=\frac{\sqrt{503}i}{56} x+\frac{13}{56}=-\frac{\sqrt{503}i}{56}
Qisqartirish.
x=\frac{-13+\sqrt{503}i}{56} x=\frac{-\sqrt{503}i-13}{56}
Tenglamaning ikkala tarafidan \frac{13}{56} ni ayirish.