Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

28k^{2}+k+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-1±\sqrt{1^{2}-4\times 28}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, 1 ni b va 1 ni c bilan almashtiring.
k=\frac{-1±\sqrt{1-4\times 28}}{2\times 28}
1 kvadratini chiqarish.
k=\frac{-1±\sqrt{1-112}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
k=\frac{-1±\sqrt{-111}}{2\times 28}
1 ni -112 ga qo'shish.
k=\frac{-1±\sqrt{111}i}{2\times 28}
-111 ning kvadrat ildizini chiqarish.
k=\frac{-1±\sqrt{111}i}{56}
2 ni 28 marotabaga ko'paytirish.
k=\frac{-1+\sqrt{111}i}{56}
k=\frac{-1±\sqrt{111}i}{56} tenglamasini yeching, bunda ± musbat. -1 ni i\sqrt{111} ga qo'shish.
k=\frac{-\sqrt{111}i-1}{56}
k=\frac{-1±\sqrt{111}i}{56} tenglamasini yeching, bunda ± manfiy. -1 dan i\sqrt{111} ni ayirish.
k=\frac{-1+\sqrt{111}i}{56} k=\frac{-\sqrt{111}i-1}{56}
Tenglama yechildi.
28k^{2}+k+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
28k^{2}+k+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
28k^{2}+k=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{28k^{2}+k}{28}=-\frac{1}{28}
Ikki tarafini 28 ga bo‘ling.
k^{2}+\frac{1}{28}k=-\frac{1}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
k^{2}+\frac{1}{28}k+\left(\frac{1}{56}\right)^{2}=-\frac{1}{28}+\left(\frac{1}{56}\right)^{2}
\frac{1}{28} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{56} olish uchun. Keyin, \frac{1}{56} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}+\frac{1}{28}k+\frac{1}{3136}=-\frac{1}{28}+\frac{1}{3136}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{56} kvadratini chiqarish.
k^{2}+\frac{1}{28}k+\frac{1}{3136}=-\frac{111}{3136}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{28} ni \frac{1}{3136} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(k+\frac{1}{56}\right)^{2}=-\frac{111}{3136}
k^{2}+\frac{1}{28}k+\frac{1}{3136} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k+\frac{1}{56}\right)^{2}}=\sqrt{-\frac{111}{3136}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k+\frac{1}{56}=\frac{\sqrt{111}i}{56} k+\frac{1}{56}=-\frac{\sqrt{111}i}{56}
Qisqartirish.
k=\frac{-1+\sqrt{111}i}{56} k=\frac{-\sqrt{111}i-1}{56}
Tenglamaning ikkala tarafidan \frac{1}{56} ni ayirish.