Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

28x^{2}-87x-148=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-87\right)±\sqrt{\left(-87\right)^{2}-4\times 28\left(-148\right)}}{2\times 28}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-87\right)±\sqrt{7569-4\times 28\left(-148\right)}}{2\times 28}
-87 kvadratini chiqarish.
x=\frac{-\left(-87\right)±\sqrt{7569-112\left(-148\right)}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-87\right)±\sqrt{7569+16576}}{2\times 28}
-112 ni -148 marotabaga ko'paytirish.
x=\frac{-\left(-87\right)±\sqrt{24145}}{2\times 28}
7569 ni 16576 ga qo'shish.
x=\frac{87±\sqrt{24145}}{2\times 28}
-87 ning teskarisi 87 ga teng.
x=\frac{87±\sqrt{24145}}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{\sqrt{24145}+87}{56}
x=\frac{87±\sqrt{24145}}{56} tenglamasini yeching, bunda ± musbat. 87 ni \sqrt{24145} ga qo'shish.
x=\frac{87-\sqrt{24145}}{56}
x=\frac{87±\sqrt{24145}}{56} tenglamasini yeching, bunda ± manfiy. 87 dan \sqrt{24145} ni ayirish.
28x^{2}-87x-148=28\left(x-\frac{\sqrt{24145}+87}{56}\right)\left(x-\frac{87-\sqrt{24145}}{56}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{87+\sqrt{24145}}{56} ga va x_{2} uchun \frac{87-\sqrt{24145}}{56} ga bo‘ling.