Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

28x^{2}-7x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 28\left(-1\right)}}{2\times 28}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 28 ni a, -7 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 28\left(-1\right)}}{2\times 28}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-112\left(-1\right)}}{2\times 28}
-4 ni 28 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+112}}{2\times 28}
-112 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{161}}{2\times 28}
49 ni 112 ga qo'shish.
x=\frac{7±\sqrt{161}}{2\times 28}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{161}}{56}
2 ni 28 marotabaga ko'paytirish.
x=\frac{\sqrt{161}+7}{56}
x=\frac{7±\sqrt{161}}{56} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{161} ga qo'shish.
x=\frac{\sqrt{161}}{56}+\frac{1}{8}
7+\sqrt{161} ni 56 ga bo'lish.
x=\frac{7-\sqrt{161}}{56}
x=\frac{7±\sqrt{161}}{56} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{161} ni ayirish.
x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
7-\sqrt{161} ni 56 ga bo'lish.
x=\frac{\sqrt{161}}{56}+\frac{1}{8} x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
Tenglama yechildi.
28x^{2}-7x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
28x^{2}-7x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
28x^{2}-7x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
28x^{2}-7x=1
0 dan -1 ni ayirish.
\frac{28x^{2}-7x}{28}=\frac{1}{28}
Ikki tarafini 28 ga bo‘ling.
x^{2}+\left(-\frac{7}{28}\right)x=\frac{1}{28}
28 ga bo'lish 28 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{4}x=\frac{1}{28}
\frac{-7}{28} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{1}{28}+\left(-\frac{1}{8}\right)^{2}
-\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{8} olish uchun. Keyin, -\frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{1}{28}+\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{8} kvadratini chiqarish.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{23}{448}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{28} ni \frac{1}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{8}\right)^{2}=\frac{23}{448}
x^{2}-\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{23}{448}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{8}=\frac{\sqrt{161}}{56} x-\frac{1}{8}=-\frac{\sqrt{161}}{56}
Qisqartirish.
x=\frac{\sqrt{161}}{56}+\frac{1}{8} x=-\frac{\sqrt{161}}{56}+\frac{1}{8}
\frac{1}{8} ni tenglamaning ikkala tarafiga qo'shish.