t uchun yechish
t=24
Baham ko'rish
Klipbordga nusxa olish
\frac{276}{4}=\frac{1\times 2+1}{2}\times \frac{3}{4}t+\frac{3}{4}t+t
Ikki tarafini 4 ga bo‘ling.
69=\frac{1\times 2+1}{2}\times \frac{3}{4}t+\frac{3}{4}t+t
69 ni olish uchun 276 ni 4 ga bo‘ling.
276=2\left(1\times 2+1\right)\times \frac{3}{4}t+3t+4t
Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
276=2\left(2+1\right)\times \frac{3}{4}t+3t+4t
2 hosil qilish uchun 1 va 2 ni ko'paytirish.
276=2\times 3\times \frac{3}{4}t+3t+4t
3 olish uchun 2 va 1'ni qo'shing.
276=6\times \frac{3}{4}t+3t+4t
6 hosil qilish uchun 2 va 3 ni ko'paytirish.
276=\frac{6\times 3}{4}t+3t+4t
6\times \frac{3}{4} ni yagona kasrga aylantiring.
276=\frac{18}{4}t+3t+4t
18 hosil qilish uchun 6 va 3 ni ko'paytirish.
276=\frac{9}{2}t+3t+4t
\frac{18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
276=\frac{15}{2}t+4t
\frac{15}{2}t ni olish uchun \frac{9}{2}t va 3t ni birlashtirish.
276=\frac{23}{2}t
\frac{23}{2}t ni olish uchun \frac{15}{2}t va 4t ni birlashtirish.
\frac{23}{2}t=276
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
t=276\times \frac{2}{23}
Ikki tarafini \frac{2}{23} va teskari kasri \frac{23}{2} ga ko‘paytiring.
t=\frac{276\times 2}{23}
276\times \frac{2}{23} ni yagona kasrga aylantiring.
t=\frac{552}{23}
552 hosil qilish uchun 276 va 2 ni ko'paytirish.
t=24
24 ni olish uchun 552 ni 23 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}