Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-18x^{2}+60x+272=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-60±\sqrt{60^{2}-4\left(-18\right)\times 272}}{2\left(-18\right)}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-60±\sqrt{3600-4\left(-18\right)\times 272}}{2\left(-18\right)}
60 kvadratini chiqarish.
x=\frac{-60±\sqrt{3600+72\times 272}}{2\left(-18\right)}
-4 ni -18 marotabaga ko'paytirish.
x=\frac{-60±\sqrt{3600+19584}}{2\left(-18\right)}
72 ni 272 marotabaga ko'paytirish.
x=\frac{-60±\sqrt{23184}}{2\left(-18\right)}
3600 ni 19584 ga qo'shish.
x=\frac{-60±12\sqrt{161}}{2\left(-18\right)}
23184 ning kvadrat ildizini chiqarish.
x=\frac{-60±12\sqrt{161}}{-36}
2 ni -18 marotabaga ko'paytirish.
x=\frac{12\sqrt{161}-60}{-36}
x=\frac{-60±12\sqrt{161}}{-36} tenglamasini yeching, bunda ± musbat. -60 ni 12\sqrt{161} ga qo'shish.
x=\frac{5-\sqrt{161}}{3}
-60+12\sqrt{161} ni -36 ga bo'lish.
x=\frac{-12\sqrt{161}-60}{-36}
x=\frac{-60±12\sqrt{161}}{-36} tenglamasini yeching, bunda ± manfiy. -60 dan 12\sqrt{161} ni ayirish.
x=\frac{\sqrt{161}+5}{3}
-60-12\sqrt{161} ni -36 ga bo'lish.
-18x^{2}+60x+272=-18\left(x-\frac{5-\sqrt{161}}{3}\right)\left(x-\frac{\sqrt{161}+5}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5-\sqrt{161}}{3} ga va x_{2} uchun \frac{5+\sqrt{161}}{3} ga bo‘ling.