Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

27x^{2}+18x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-18±\sqrt{18^{2}-4\times 27}}{2\times 27}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-18±\sqrt{324-4\times 27}}{2\times 27}
18 kvadratini chiqarish.
x=\frac{-18±\sqrt{324-108}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
x=\frac{-18±\sqrt{216}}{2\times 27}
324 ni -108 ga qo'shish.
x=\frac{-18±6\sqrt{6}}{2\times 27}
216 ning kvadrat ildizini chiqarish.
x=\frac{-18±6\sqrt{6}}{54}
2 ni 27 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}-18}{54}
x=\frac{-18±6\sqrt{6}}{54} tenglamasini yeching, bunda ± musbat. -18 ni 6\sqrt{6} ga qo'shish.
x=\frac{\sqrt{6}}{9}-\frac{1}{3}
-18+6\sqrt{6} ni 54 ga bo'lish.
x=\frac{-6\sqrt{6}-18}{54}
x=\frac{-18±6\sqrt{6}}{54} tenglamasini yeching, bunda ± manfiy. -18 dan 6\sqrt{6} ni ayirish.
x=-\frac{\sqrt{6}}{9}-\frac{1}{3}
-18-6\sqrt{6} ni 54 ga bo'lish.
27x^{2}+18x+1=27\left(x-\left(\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{1}{3}+\frac{\sqrt{6}}{9} ga va x_{2} uchun -\frac{1}{3}-\frac{\sqrt{6}}{9} ga bo‘ling.