Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

27x^{2}+11x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-11±\sqrt{11^{2}-4\times 27\left(-2\right)}}{2\times 27}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-11±\sqrt{121-4\times 27\left(-2\right)}}{2\times 27}
11 kvadratini chiqarish.
x=\frac{-11±\sqrt{121-108\left(-2\right)}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{121+216}}{2\times 27}
-108 ni -2 marotabaga ko'paytirish.
x=\frac{-11±\sqrt{337}}{2\times 27}
121 ni 216 ga qo'shish.
x=\frac{-11±\sqrt{337}}{54}
2 ni 27 marotabaga ko'paytirish.
x=\frac{\sqrt{337}-11}{54}
x=\frac{-11±\sqrt{337}}{54} tenglamasini yeching, bunda ± musbat. -11 ni \sqrt{337} ga qo'shish.
x=\frac{-\sqrt{337}-11}{54}
x=\frac{-11±\sqrt{337}}{54} tenglamasini yeching, bunda ± manfiy. -11 dan \sqrt{337} ni ayirish.
27x^{2}+11x-2=27\left(x-\frac{\sqrt{337}-11}{54}\right)\left(x-\frac{-\sqrt{337}-11}{54}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-11+\sqrt{337}}{54} ga va x_{2} uchun \frac{-11-\sqrt{337}}{54} ga bo‘ling.