m uchun yechish
m=\frac{3n^{2}}{101}+\frac{400}{909}
n uchun yechish
n=\frac{\sqrt{2727m-1200}}{9}
n=-\frac{\sqrt{2727m-1200}}{9}\text{, }m\geq \frac{400}{909}
Baham ko'rish
Klipbordga nusxa olish
-909m+400=-27n^{2}
Ikkala tarafdan 27n^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-909m=-27n^{2}-400
Ikkala tarafdan 400 ni ayirish.
\frac{-909m}{-909}=\frac{-27n^{2}-400}{-909}
Ikki tarafini -909 ga bo‘ling.
m=\frac{-27n^{2}-400}{-909}
-909 ga bo'lish -909 ga ko'paytirishni bekor qiladi.
m=\frac{3n^{2}}{101}+\frac{400}{909}
-27n^{2}-400 ni -909 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}