n uchun yechish
n=-\frac{\sqrt{23}i}{3}\approx -0-1,598610508i
n=\frac{\sqrt{23}i}{3}\approx 1,598610508i
Baham ko'rish
Klipbordga nusxa olish
27n^{2}+69=0
69 olish uchun 72 dan 3 ni ayirish.
27n^{2}=-69
Ikkala tarafdan 69 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
n^{2}=\frac{-69}{27}
Ikki tarafini 27 ga bo‘ling.
n^{2}=-\frac{23}{9}
\frac{-69}{27} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
Tenglama yechildi.
27n^{2}+69=0
69 olish uchun 72 dan 3 ni ayirish.
n=\frac{0±\sqrt{0^{2}-4\times 27\times 69}}{2\times 27}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 27 ni a, 0 ni b va 69 ni c bilan almashtiring.
n=\frac{0±\sqrt{-4\times 27\times 69}}{2\times 27}
0 kvadratini chiqarish.
n=\frac{0±\sqrt{-108\times 69}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
n=\frac{0±\sqrt{-7452}}{2\times 27}
-108 ni 69 marotabaga ko'paytirish.
n=\frac{0±18\sqrt{23}i}{2\times 27}
-7452 ning kvadrat ildizini chiqarish.
n=\frac{0±18\sqrt{23}i}{54}
2 ni 27 marotabaga ko'paytirish.
n=\frac{\sqrt{23}i}{3}
n=\frac{0±18\sqrt{23}i}{54} tenglamasini yeching, bunda ± musbat.
n=-\frac{\sqrt{23}i}{3}
n=\frac{0±18\sqrt{23}i}{54} tenglamasini yeching, bunda ± manfiy.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}