Asosiy tarkibga oʻtish
n uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

27n^{2}+69=0
69 olish uchun 72 dan 3 ni ayirish.
27n^{2}=-69
Ikkala tarafdan 69 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
n^{2}=\frac{-69}{27}
Ikki tarafini 27 ga bo‘ling.
n^{2}=-\frac{23}{9}
\frac{-69}{27} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
Tenglama yechildi.
27n^{2}+69=0
69 olish uchun 72 dan 3 ni ayirish.
n=\frac{0±\sqrt{0^{2}-4\times 27\times 69}}{2\times 27}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 27 ni a, 0 ni b va 69 ni c bilan almashtiring.
n=\frac{0±\sqrt{-4\times 27\times 69}}{2\times 27}
0 kvadratini chiqarish.
n=\frac{0±\sqrt{-108\times 69}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
n=\frac{0±\sqrt{-7452}}{2\times 27}
-108 ni 69 marotabaga ko'paytirish.
n=\frac{0±18\sqrt{23}i}{2\times 27}
-7452 ning kvadrat ildizini chiqarish.
n=\frac{0±18\sqrt{23}i}{54}
2 ni 27 marotabaga ko'paytirish.
n=\frac{\sqrt{23}i}{3}
n=\frac{0±18\sqrt{23}i}{54} tenglamasini yeching, bunda ± musbat.
n=-\frac{\sqrt{23}i}{3}
n=\frac{0±18\sqrt{23}i}{54} tenglamasini yeching, bunda ± manfiy.
n=\frac{\sqrt{23}i}{3} n=-\frac{\sqrt{23}i}{3}
Tenglama yechildi.