x uchun yechish
x=\frac{\sqrt{5749}-59}{54}\approx 0,311521488
x=\frac{-\sqrt{5749}-59}{54}\approx -2,496706673
Grafik
Baham ko'rish
Klipbordga nusxa olish
27x^{2}+59x-21=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-59±\sqrt{59^{2}-4\times 27\left(-21\right)}}{2\times 27}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 27 ni a, 59 ni b va -21 ni c bilan almashtiring.
x=\frac{-59±\sqrt{3481-4\times 27\left(-21\right)}}{2\times 27}
59 kvadratini chiqarish.
x=\frac{-59±\sqrt{3481-108\left(-21\right)}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
x=\frac{-59±\sqrt{3481+2268}}{2\times 27}
-108 ni -21 marotabaga ko'paytirish.
x=\frac{-59±\sqrt{5749}}{2\times 27}
3481 ni 2268 ga qo'shish.
x=\frac{-59±\sqrt{5749}}{54}
2 ni 27 marotabaga ko'paytirish.
x=\frac{\sqrt{5749}-59}{54}
x=\frac{-59±\sqrt{5749}}{54} tenglamasini yeching, bunda ± musbat. -59 ni \sqrt{5749} ga qo'shish.
x=\frac{-\sqrt{5749}-59}{54}
x=\frac{-59±\sqrt{5749}}{54} tenglamasini yeching, bunda ± manfiy. -59 dan \sqrt{5749} ni ayirish.
x=\frac{\sqrt{5749}-59}{54} x=\frac{-\sqrt{5749}-59}{54}
Tenglama yechildi.
27x^{2}+59x-21=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
27x^{2}+59x-21-\left(-21\right)=-\left(-21\right)
21 ni tenglamaning ikkala tarafiga qo'shish.
27x^{2}+59x=-\left(-21\right)
O‘zidan -21 ayirilsa 0 qoladi.
27x^{2}+59x=21
0 dan -21 ni ayirish.
\frac{27x^{2}+59x}{27}=\frac{21}{27}
Ikki tarafini 27 ga bo‘ling.
x^{2}+\frac{59}{27}x=\frac{21}{27}
27 ga bo'lish 27 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{59}{27}x=\frac{7}{9}
\frac{21}{27} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{59}{27}x+\left(\frac{59}{54}\right)^{2}=\frac{7}{9}+\left(\frac{59}{54}\right)^{2}
\frac{59}{27} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{59}{54} olish uchun. Keyin, \frac{59}{54} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{59}{27}x+\frac{3481}{2916}=\frac{7}{9}+\frac{3481}{2916}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{59}{54} kvadratini chiqarish.
x^{2}+\frac{59}{27}x+\frac{3481}{2916}=\frac{5749}{2916}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{9} ni \frac{3481}{2916} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{59}{54}\right)^{2}=\frac{5749}{2916}
x^{2}+\frac{59}{27}x+\frac{3481}{2916} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{59}{54}\right)^{2}}=\sqrt{\frac{5749}{2916}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{59}{54}=\frac{\sqrt{5749}}{54} x+\frac{59}{54}=-\frac{\sqrt{5749}}{54}
Qisqartirish.
x=\frac{\sqrt{5749}-59}{54} x=\frac{-\sqrt{5749}-59}{54}
Tenglamaning ikkala tarafidan \frac{59}{54} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}