Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

27x^{2}+33x-120=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-33±\sqrt{33^{2}-4\times 27\left(-120\right)}}{2\times 27}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 27 ni a, 33 ni b va -120 ni c bilan almashtiring.
x=\frac{-33±\sqrt{1089-4\times 27\left(-120\right)}}{2\times 27}
33 kvadratini chiqarish.
x=\frac{-33±\sqrt{1089-108\left(-120\right)}}{2\times 27}
-4 ni 27 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{1089+12960}}{2\times 27}
-108 ni -120 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{14049}}{2\times 27}
1089 ni 12960 ga qo'shish.
x=\frac{-33±3\sqrt{1561}}{2\times 27}
14049 ning kvadrat ildizini chiqarish.
x=\frac{-33±3\sqrt{1561}}{54}
2 ni 27 marotabaga ko'paytirish.
x=\frac{3\sqrt{1561}-33}{54}
x=\frac{-33±3\sqrt{1561}}{54} tenglamasini yeching, bunda ± musbat. -33 ni 3\sqrt{1561} ga qo'shish.
x=\frac{\sqrt{1561}-11}{18}
-33+3\sqrt{1561} ni 54 ga bo'lish.
x=\frac{-3\sqrt{1561}-33}{54}
x=\frac{-33±3\sqrt{1561}}{54} tenglamasini yeching, bunda ± manfiy. -33 dan 3\sqrt{1561} ni ayirish.
x=\frac{-\sqrt{1561}-11}{18}
-33-3\sqrt{1561} ni 54 ga bo'lish.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
Tenglama yechildi.
27x^{2}+33x-120=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
27x^{2}+33x-120-\left(-120\right)=-\left(-120\right)
120 ni tenglamaning ikkala tarafiga qo'shish.
27x^{2}+33x=-\left(-120\right)
O‘zidan -120 ayirilsa 0 qoladi.
27x^{2}+33x=120
0 dan -120 ni ayirish.
\frac{27x^{2}+33x}{27}=\frac{120}{27}
Ikki tarafini 27 ga bo‘ling.
x^{2}+\frac{33}{27}x=\frac{120}{27}
27 ga bo'lish 27 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{9}x=\frac{120}{27}
\frac{33}{27} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{11}{9}x=\frac{40}{9}
\frac{120}{27} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=\frac{40}{9}+\left(\frac{11}{18}\right)^{2}
\frac{11}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{18} olish uchun. Keyin, \frac{11}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{40}{9}+\frac{121}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{18} kvadratini chiqarish.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{1561}{324}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{40}{9} ni \frac{121}{324} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{11}{18}\right)^{2}=\frac{1561}{324}
x^{2}+\frac{11}{9}x+\frac{121}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{1561}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{18}=\frac{\sqrt{1561}}{18} x+\frac{11}{18}=-\frac{\sqrt{1561}}{18}
Qisqartirish.
x=\frac{\sqrt{1561}-11}{18} x=\frac{-\sqrt{1561}-11}{18}
Tenglamaning ikkala tarafidan \frac{11}{18} ni ayirish.