Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}=\frac{48}{26}
Ikki tarafini 26 ga bo‘ling.
y^{2}=\frac{24}{13}
\frac{48}{26} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y^{2}=\frac{48}{26}
Ikki tarafini 26 ga bo‘ling.
y^{2}=\frac{24}{13}
\frac{48}{26} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y^{2}-\frac{24}{13}=0
Ikkala tarafdan \frac{24}{13} ni ayirish.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{13}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{24}{13} ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-\frac{24}{13}\right)}}{2}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{\frac{96}{13}}}{2}
-4 ni -\frac{24}{13} marotabaga ko'paytirish.
y=\frac{0±\frac{4\sqrt{78}}{13}}{2}
\frac{96}{13} ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{78}}{13}
y=\frac{0±\frac{4\sqrt{78}}{13}}{2} tenglamasini yeching, bunda ± musbat.
y=-\frac{2\sqrt{78}}{13}
y=\frac{0±\frac{4\sqrt{78}}{13}}{2} tenglamasini yeching, bunda ± manfiy.
y=\frac{2\sqrt{78}}{13} y=-\frac{2\sqrt{78}}{13}
Tenglama yechildi.