Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

25x^{2}-90x+82=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 82}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -90 ni b va 82 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 82}}{2\times 25}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 82}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100-8200}}{2\times 25}
-100 ni 82 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{-100}}{2\times 25}
8100 ni -8200 ga qo'shish.
x=\frac{-\left(-90\right)±10i}{2\times 25}
-100 ning kvadrat ildizini chiqarish.
x=\frac{90±10i}{2\times 25}
-90 ning teskarisi 90 ga teng.
x=\frac{90±10i}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{90+10i}{50}
x=\frac{90±10i}{50} tenglamasini yeching, bunda ± musbat. 90 ni 10i ga qo'shish.
x=\frac{9}{5}+\frac{1}{5}i
90+10i ni 50 ga bo'lish.
x=\frac{90-10i}{50}
x=\frac{90±10i}{50} tenglamasini yeching, bunda ± manfiy. 90 dan 10i ni ayirish.
x=\frac{9}{5}-\frac{1}{5}i
90-10i ni 50 ga bo'lish.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
Tenglama yechildi.
25x^{2}-90x+82=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
25x^{2}-90x+82-82=-82
Tenglamaning ikkala tarafidan 82 ni ayirish.
25x^{2}-90x=-82
O‘zidan 82 ayirilsa 0 qoladi.
\frac{25x^{2}-90x}{25}=-\frac{82}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{82}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{18}{5}x=-\frac{82}{25}
\frac{-90}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{82}{25}+\left(-\frac{9}{5}\right)^{2}
-\frac{18}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{5} olish uchun. Keyin, -\frac{9}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-82+81}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{5} kvadratini chiqarish.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{1}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{82}{25} ni \frac{81}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{5}\right)^{2}=-\frac{1}{25}
x^{2}-\frac{18}{5}x+\frac{81}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{1}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{5}=\frac{1}{5}i x-\frac{9}{5}=-\frac{1}{5}i
Qisqartirish.
x=\frac{9}{5}+\frac{1}{5}i x=\frac{9}{5}-\frac{1}{5}i
\frac{9}{5} ni tenglamaning ikkala tarafiga qo'shish.