x uchun yechish
x=\frac{\sqrt{661}+19}{50}\approx 0,894198405
x=\frac{19-\sqrt{661}}{50}\approx -0,134198405
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}-19x-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 25\left(-3\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -19 ni b va -3 ni c bilan almashtiring.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 25\left(-3\right)}}{2\times 25}
-19 kvadratini chiqarish.
x=\frac{-\left(-19\right)±\sqrt{361-100\left(-3\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{361+300}}{2\times 25}
-100 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-19\right)±\sqrt{661}}{2\times 25}
361 ni 300 ga qo'shish.
x=\frac{19±\sqrt{661}}{2\times 25}
-19 ning teskarisi 19 ga teng.
x=\frac{19±\sqrt{661}}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{\sqrt{661}+19}{50}
x=\frac{19±\sqrt{661}}{50} tenglamasini yeching, bunda ± musbat. 19 ni \sqrt{661} ga qo'shish.
x=\frac{19-\sqrt{661}}{50}
x=\frac{19±\sqrt{661}}{50} tenglamasini yeching, bunda ± manfiy. 19 dan \sqrt{661} ni ayirish.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
Tenglama yechildi.
25x^{2}-19x-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
25x^{2}-19x-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
25x^{2}-19x=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
25x^{2}-19x=3
0 dan -3 ni ayirish.
\frac{25x^{2}-19x}{25}=\frac{3}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}-\frac{19}{25}x=\frac{3}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{19}{25}x+\left(-\frac{19}{50}\right)^{2}=\frac{3}{25}+\left(-\frac{19}{50}\right)^{2}
-\frac{19}{25} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{19}{50} olish uchun. Keyin, -\frac{19}{50} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{3}{25}+\frac{361}{2500}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{19}{50} kvadratini chiqarish.
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{661}{2500}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{25} ni \frac{361}{2500} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{19}{50}\right)^{2}=\frac{661}{2500}
x^{2}-\frac{19}{25}x+\frac{361}{2500} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{19}{50}\right)^{2}}=\sqrt{\frac{661}{2500}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{19}{50}=\frac{\sqrt{661}}{50} x-\frac{19}{50}=-\frac{\sqrt{661}}{50}
Qisqartirish.
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
\frac{19}{50} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}