Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(5w-4\right)\left(5w+4\right)=0
Hisoblang: 25w^{2}-16. 25w^{2}-16 ni \left(5w\right)^{2}-4^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
w=\frac{4}{5} w=-\frac{4}{5}
Tenglamani yechish uchun 5w-4=0 va 5w+4=0 ni yeching.
25w^{2}=16
16 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
w^{2}=\frac{16}{25}
Ikki tarafini 25 ga bo‘ling.
w=\frac{4}{5} w=-\frac{4}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
25w^{2}-16=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\times 25\left(-16\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, 0 ni b va -16 ni c bilan almashtiring.
w=\frac{0±\sqrt{-4\times 25\left(-16\right)}}{2\times 25}
0 kvadratini chiqarish.
w=\frac{0±\sqrt{-100\left(-16\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
w=\frac{0±\sqrt{1600}}{2\times 25}
-100 ni -16 marotabaga ko'paytirish.
w=\frac{0±40}{2\times 25}
1600 ning kvadrat ildizini chiqarish.
w=\frac{0±40}{50}
2 ni 25 marotabaga ko'paytirish.
w=\frac{4}{5}
w=\frac{0±40}{50} tenglamasini yeching, bunda ± musbat. \frac{40}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w=-\frac{4}{5}
w=\frac{0±40}{50} tenglamasini yeching, bunda ± manfiy. \frac{-40}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w=\frac{4}{5} w=-\frac{4}{5}
Tenglama yechildi.