x uchun yechish (complex solution)
x=\frac{9+\sqrt{6}i}{5}\approx 1,8+0,489897949i
x=\frac{-\sqrt{6}i+9}{5}\approx 1,8-0,489897949i
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}-90x+87=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 87}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -90 ni b va 87 ni c bilan almashtiring.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 87}}{2\times 25}
-90 kvadratini chiqarish.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 87}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{8100-8700}}{2\times 25}
-100 ni 87 marotabaga ko'paytirish.
x=\frac{-\left(-90\right)±\sqrt{-600}}{2\times 25}
8100 ni -8700 ga qo'shish.
x=\frac{-\left(-90\right)±10\sqrt{6}i}{2\times 25}
-600 ning kvadrat ildizini chiqarish.
x=\frac{90±10\sqrt{6}i}{2\times 25}
-90 ning teskarisi 90 ga teng.
x=\frac{90±10\sqrt{6}i}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{90+10\sqrt{6}i}{50}
x=\frac{90±10\sqrt{6}i}{50} tenglamasini yeching, bunda ± musbat. 90 ni 10i\sqrt{6} ga qo'shish.
x=\frac{9+\sqrt{6}i}{5}
90+10i\sqrt{6} ni 50 ga bo'lish.
x=\frac{-10\sqrt{6}i+90}{50}
x=\frac{90±10\sqrt{6}i}{50} tenglamasini yeching, bunda ± manfiy. 90 dan 10i\sqrt{6} ni ayirish.
x=\frac{-\sqrt{6}i+9}{5}
90-10i\sqrt{6} ni 50 ga bo'lish.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
Tenglama yechildi.
25x^{2}-90x+87=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
25x^{2}-90x+87-87=-87
Tenglamaning ikkala tarafidan 87 ni ayirish.
25x^{2}-90x=-87
O‘zidan 87 ayirilsa 0 qoladi.
\frac{25x^{2}-90x}{25}=-\frac{87}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{87}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{18}{5}x=-\frac{87}{25}
\frac{-90}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{87}{25}+\left(-\frac{9}{5}\right)^{2}
-\frac{18}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{5} olish uchun. Keyin, -\frac{9}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-87+81}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{5} kvadratini chiqarish.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{6}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{87}{25} ni \frac{81}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{9}{5}\right)^{2}=-\frac{6}{25}
x^{2}-\frac{18}{5}x+\frac{81}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{6}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{5}=\frac{\sqrt{6}i}{5} x-\frac{9}{5}=-\frac{\sqrt{6}i}{5}
Qisqartirish.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
\frac{9}{5} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}