x uchun yechish
x=\frac{\sqrt{21}-3}{5}\approx 0,316515139
x=\frac{-\sqrt{21}-3}{5}\approx -1,516515139
Grafik
Baham ko'rish
Klipbordga nusxa olish
25x^{2}+30x=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
25x^{2}+30x-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
25x^{2}+30x-12=0
O‘zidan 12 ayirilsa 0 qoladi.
x=\frac{-30±\sqrt{30^{2}-4\times 25\left(-12\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, 30 ni b va -12 ni c bilan almashtiring.
x=\frac{-30±\sqrt{900-4\times 25\left(-12\right)}}{2\times 25}
30 kvadratini chiqarish.
x=\frac{-30±\sqrt{900-100\left(-12\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{900+1200}}{2\times 25}
-100 ni -12 marotabaga ko'paytirish.
x=\frac{-30±\sqrt{2100}}{2\times 25}
900 ni 1200 ga qo'shish.
x=\frac{-30±10\sqrt{21}}{2\times 25}
2100 ning kvadrat ildizini chiqarish.
x=\frac{-30±10\sqrt{21}}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{10\sqrt{21}-30}{50}
x=\frac{-30±10\sqrt{21}}{50} tenglamasini yeching, bunda ± musbat. -30 ni 10\sqrt{21} ga qo'shish.
x=\frac{\sqrt{21}-3}{5}
-30+10\sqrt{21} ni 50 ga bo'lish.
x=\frac{-10\sqrt{21}-30}{50}
x=\frac{-30±10\sqrt{21}}{50} tenglamasini yeching, bunda ± manfiy. -30 dan 10\sqrt{21} ni ayirish.
x=\frac{-\sqrt{21}-3}{5}
-30-10\sqrt{21} ni 50 ga bo'lish.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
Tenglama yechildi.
25x^{2}+30x=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{25x^{2}+30x}{25}=\frac{12}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\frac{30}{25}x=\frac{12}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{6}{5}x=\frac{12}{25}
\frac{30}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{12}{25}+\left(\frac{3}{5}\right)^{2}
\frac{6}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{5} olish uchun. Keyin, \frac{3}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{12+9}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{5} kvadratini chiqarish.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{21}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{25} ni \frac{9}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{5}\right)^{2}=\frac{21}{25}
x^{2}+\frac{6}{5}x+\frac{9}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{21}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{5}=\frac{\sqrt{21}}{5} x+\frac{3}{5}=-\frac{\sqrt{21}}{5}
Qisqartirish.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
Tenglamaning ikkala tarafidan \frac{3}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}