x uchun yechish
x=\frac{1}{5}=0,2
x = \frac{9}{5} = 1\frac{4}{5} = 1,8
Grafik
Baham ko'rish
Klipbordga nusxa olish
25\left(1-x\right)^{2}=16
\left(1-x\right)^{2} hosil qilish uchun 1-x va 1-x ni ko'paytirish.
25\left(1-2x+x^{2}\right)=16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
25-50x+25x^{2}=16
25 ga 1-2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
25-50x+25x^{2}-16=0
Ikkala tarafdan 16 ni ayirish.
9-50x+25x^{2}=0
9 olish uchun 25 dan 16 ni ayirish.
25x^{2}-50x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 25\times 9}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -50 ni b va 9 ni c bilan almashtiring.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 25\times 9}}{2\times 25}
-50 kvadratini chiqarish.
x=\frac{-\left(-50\right)±\sqrt{2500-100\times 9}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{2500-900}}{2\times 25}
-100 ni 9 marotabaga ko'paytirish.
x=\frac{-\left(-50\right)±\sqrt{1600}}{2\times 25}
2500 ni -900 ga qo'shish.
x=\frac{-\left(-50\right)±40}{2\times 25}
1600 ning kvadrat ildizini chiqarish.
x=\frac{50±40}{2\times 25}
-50 ning teskarisi 50 ga teng.
x=\frac{50±40}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{90}{50}
x=\frac{50±40}{50} tenglamasini yeching, bunda ± musbat. 50 ni 40 ga qo'shish.
x=\frac{9}{5}
\frac{90}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{10}{50}
x=\frac{50±40}{50} tenglamasini yeching, bunda ± manfiy. 50 dan 40 ni ayirish.
x=\frac{1}{5}
\frac{10}{50} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{9}{5} x=\frac{1}{5}
Tenglama yechildi.
25\left(1-x\right)^{2}=16
\left(1-x\right)^{2} hosil qilish uchun 1-x va 1-x ni ko'paytirish.
25\left(1-2x+x^{2}\right)=16
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-x\right)^{2} kengaytirilishi uchun ishlating.
25-50x+25x^{2}=16
25 ga 1-2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-50x+25x^{2}=16-25
Ikkala tarafdan 25 ni ayirish.
-50x+25x^{2}=-9
-9 olish uchun 16 dan 25 ni ayirish.
25x^{2}-50x=-9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{25x^{2}-50x}{25}=-\frac{9}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{50}{25}\right)x=-\frac{9}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{9}{25}
-50 ni 25 ga bo'lish.
x^{2}-2x+1=-\frac{9}{25}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{16}{25}
-\frac{9}{25} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{16}{25}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{16}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{4}{5} x-1=-\frac{4}{5}
Qisqartirish.
x=\frac{9}{5} x=\frac{1}{5}
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}