Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}-8x+6=25
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}-8x+6-25=0
Ikkala tarafdan 25 ni ayirish.
2x^{2}-8x-19=0
-19 olish uchun 6 dan 25 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-19\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -8 ni b va -19 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-19\right)}}{2\times 2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-19\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64+152}}{2\times 2}
-8 ni -19 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{216}}{2\times 2}
64 ni 152 ga qo'shish.
x=\frac{-\left(-8\right)±6\sqrt{6}}{2\times 2}
216 ning kvadrat ildizini chiqarish.
x=\frac{8±6\sqrt{6}}{2\times 2}
-8 ning teskarisi 8 ga teng.
x=\frac{8±6\sqrt{6}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}+8}{4}
x=\frac{8±6\sqrt{6}}{4} tenglamasini yeching, bunda ± musbat. 8 ni 6\sqrt{6} ga qo'shish.
x=\frac{3\sqrt{6}}{2}+2
6\sqrt{6}+8 ni 4 ga bo'lish.
x=\frac{8-6\sqrt{6}}{4}
x=\frac{8±6\sqrt{6}}{4} tenglamasini yeching, bunda ± manfiy. 8 dan 6\sqrt{6} ni ayirish.
x=-\frac{3\sqrt{6}}{2}+2
8-6\sqrt{6} ni 4 ga bo'lish.
x=\frac{3\sqrt{6}}{2}+2 x=-\frac{3\sqrt{6}}{2}+2
Tenglama yechildi.
2x^{2}-8x+6=25
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}-8x=25-6
Ikkala tarafdan 6 ni ayirish.
2x^{2}-8x=19
19 olish uchun 25 dan 6 ni ayirish.
\frac{2x^{2}-8x}{2}=\frac{19}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{19}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-4x=\frac{19}{2}
-8 ni 2 ga bo'lish.
x^{2}-4x+\left(-2\right)^{2}=\frac{19}{2}+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=\frac{19}{2}+4
-2 kvadratini chiqarish.
x^{2}-4x+4=\frac{27}{2}
\frac{19}{2} ni 4 ga qo'shish.
\left(x-2\right)^{2}=\frac{27}{2}
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{27}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=\frac{3\sqrt{6}}{2} x-2=-\frac{3\sqrt{6}}{2}
Qisqartirish.
x=\frac{3\sqrt{6}}{2}+2 x=-\frac{3\sqrt{6}}{2}+2
2 ni tenglamaning ikkala tarafiga qo'shish.