h uchun yechish
h=\frac{-17+\sqrt{9431}i}{486}\approx -0,034979424+0,199821679i
h=\frac{-\sqrt{9431}i-17}{486}\approx -0,034979424-0,199821679i
Baham ko'rish
Klipbordga nusxa olish
243h^{2}+17h=-10
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
243h^{2}+17h-\left(-10\right)=-10-\left(-10\right)
10 ni tenglamaning ikkala tarafiga qo'shish.
243h^{2}+17h-\left(-10\right)=0
O‘zidan -10 ayirilsa 0 qoladi.
243h^{2}+17h+10=0
0 dan -10 ni ayirish.
h=\frac{-17±\sqrt{17^{2}-4\times 243\times 10}}{2\times 243}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 243 ni a, 17 ni b va 10 ni c bilan almashtiring.
h=\frac{-17±\sqrt{289-4\times 243\times 10}}{2\times 243}
17 kvadratini chiqarish.
h=\frac{-17±\sqrt{289-972\times 10}}{2\times 243}
-4 ni 243 marotabaga ko'paytirish.
h=\frac{-17±\sqrt{289-9720}}{2\times 243}
-972 ni 10 marotabaga ko'paytirish.
h=\frac{-17±\sqrt{-9431}}{2\times 243}
289 ni -9720 ga qo'shish.
h=\frac{-17±\sqrt{9431}i}{2\times 243}
-9431 ning kvadrat ildizini chiqarish.
h=\frac{-17±\sqrt{9431}i}{486}
2 ni 243 marotabaga ko'paytirish.
h=\frac{-17+\sqrt{9431}i}{486}
h=\frac{-17±\sqrt{9431}i}{486} tenglamasini yeching, bunda ± musbat. -17 ni i\sqrt{9431} ga qo'shish.
h=\frac{-\sqrt{9431}i-17}{486}
h=\frac{-17±\sqrt{9431}i}{486} tenglamasini yeching, bunda ± manfiy. -17 dan i\sqrt{9431} ni ayirish.
h=\frac{-17+\sqrt{9431}i}{486} h=\frac{-\sqrt{9431}i-17}{486}
Tenglama yechildi.
243h^{2}+17h=-10
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{243h^{2}+17h}{243}=-\frac{10}{243}
Ikki tarafini 243 ga bo‘ling.
h^{2}+\frac{17}{243}h=-\frac{10}{243}
243 ga bo'lish 243 ga ko'paytirishni bekor qiladi.
h^{2}+\frac{17}{243}h+\left(\frac{17}{486}\right)^{2}=-\frac{10}{243}+\left(\frac{17}{486}\right)^{2}
\frac{17}{243} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{17}{486} olish uchun. Keyin, \frac{17}{486} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
h^{2}+\frac{17}{243}h+\frac{289}{236196}=-\frac{10}{243}+\frac{289}{236196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{17}{486} kvadratini chiqarish.
h^{2}+\frac{17}{243}h+\frac{289}{236196}=-\frac{9431}{236196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{10}{243} ni \frac{289}{236196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(h+\frac{17}{486}\right)^{2}=-\frac{9431}{236196}
h^{2}+\frac{17}{243}h+\frac{289}{236196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(h+\frac{17}{486}\right)^{2}}=\sqrt{-\frac{9431}{236196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
h+\frac{17}{486}=\frac{\sqrt{9431}i}{486} h+\frac{17}{486}=-\frac{\sqrt{9431}i}{486}
Qisqartirish.
h=\frac{-17+\sqrt{9431}i}{486} h=\frac{-\sqrt{9431}i-17}{486}
Tenglamaning ikkala tarafidan \frac{17}{486} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}